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ABSTRACT

PGPF (Plant Growth-Promoting Fungi) application is a 
revolutionary sustainable approach that enhances crop 
yields, improves soil health, and mitigates environmental 
degradation. PGPF interacts with plants, stimulating root 
growth, and boosting nutrient uptake, leading to improved 
crop productivity and quality. The fungal community also 
induces systemic resistance in plants through the expression 
of defence-related enzymes (such as peroxidase, polyphenol 
oxidase, and chalcone synthase) and defence chemicals (such 
as phytoalexin and anti-microbial phenolic compounds) for 
conferring structural and chemical barrier against pathogens 
and pests. Additionally, PGPF promotes soil biodiversity, 
structure, and fertility, increasing water retention and 
aeration. This approach reduces the reliance on chemical 
fertilizers and pesticides, minimizing soil pollution and 
environmental harm. By adopting PGPF application, farmers 
can achieve sustainable agriculture, ensuring food security 
and environmental conservation.

Keywords  
Mycoparasitism, Phytohormones, Plant Growth-Promoting 
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Resistance.

INTRODUCTION

PGPF are a heterogeneous group of soil-dwelling, non-
pathogenic saprophytic fungi that establish a close association 
with plants and promote plant growth and health through 
several activities (Naziya et al., 2020). Further, fungi under 
PGPF may differ distinctly from each other with respect to their 
taxonomy, habitats, physiology, and even to their interactions 
with plants. The term PGPF is not absolute, rather it is an 
operational term (Bent, 2006), as all fungi that promote plant 
growth are not PGPF, for example, mycorrhizal fungi, which are 
known to boost the growth of the plants, are not considered 
as PGPF. An important feature that gives PGPF a different 
identity is that the they are non-symbiotic saprotrophic fungi 
that live freely on a zone of soil at the vicinity of the root or the 
interior of the root itself, whereas mycorrhizal fungi behave 
as obligate biotrophs and develop an intimate association 
with the roots of most host plants (Hossain et al., 2017a, b). 
Root colonization ability is considered as one of the most 
important characteristics of PGPF which helps to promote 
plant growth (Islam et al., 2014). Fungi of the genera such as 
Aspergillus, Fusarium, Penicillium, Piriformospora, Phytophthora, 
Rhizoctonia, Phoma, and Trichoderma are the strains mostly 
used in research as PGPF (Hossain et al., 2017a, b; Javaid 
et al., 2020; Murali et al., 2021). The non-pathogenic fungi 
such as Pythium oligandrum and Phytophthora cryptogea 
colonizing the root ecosystems are also considered as PGPF 
(Benhamou et al., 2012; Bent 2006). PGP fungi have reported 
from different genera of phyla Chytridiomycota, Zygomycota, 
Glomeromycota, Ascomycota, and Basidiomycota. The 
beneficial effects of Plant Growth-Promoting Fungi (PGPF) 
are linked to their ability to colonize roots, produce growth 
hormones, facilitate mineralization, enhance nutrient 
uptake, control diseases through antagonistic mechanisms, 
and trigger defense strategies against pathogens. These 
defense strategies include inducing systemic resistance 
(ISR) and systemic acquired resistance (SAR) in plants, which 
involves the production of defense enzymes, chemicals, and 
pathogenesis-related proteins (PR-proteins) (Islam et al., 2014; 
Nogueira-Lopez et al., 2020). The beneficial fungi promote the 
plant via directed multifarious plant growth-promoting (PGP) 
attributes like micronutrients solubilization (phosphorus, 
potassium and zinc) and production of plant growth regulators 
like auxin, gibberellins, cytokinin and ethylene or indirectly 
via the antagonistic substances, production of siderophores, 
antibiotic and synthesis of cell wall lysing enzymes like 
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cellulases, glycosidase and gluconase (Abo Nouh, 2019; Urja 
and Meenu, 2010). By harnessing the benefits of beneficial 
soil microorganisms, including fungi, soil health can be 
substantially enhanced, diseases can be controlled through 
antagonistic interactions and induced systemic resistance, 
plant growth can be promoted, and a more sustainable 
alternative to synthetic chemical fertilizers can be provided 
(Bhardwaj et al., 2014). These prospective PGPF would play 
an important role in agriculture for long-term productivity, 
soil health management, and environmental restoration as 
a cost-effective input in the next decades, perhaps providing 
substantial relief for food security. 

Rhizosphere 

Rhizosphere is the soil zone, which is influenced by the roots. 
Plants share a micro-ecosystem at the vicinity of the plant root 
system comprising hot spot zone of the microbial community 
(like bacteria, fungi, nematodes, viruses, arthropods, 
oomycetes, protozoa, algae, and archaea), of which bacteria 
and fungi are most common and extensively studied (Akinola 
and Babalola 2021). The plant rhizosphere harbours both 
beneficial and pathogenic microorganisms comprising up to 
1011 microbes per gram of soil and above 3000 prokaryotic 
species in general; and therefore, it represents a composite 
ecosystem on earth (Hossain et al., 2017a, b; Mendes et al., 
2013). This rhizospheric zone offers great opportunities for 
plant–microbial interactions, and therefore significantly 
affects plant growth, disease resistance, and nutrient 
recycling (Akinola and Babalola, 2021). Understanding the 
complex microbial interactions in the rhizosphere is essential 
for developing organic farming practices that reduce 
reliance on synthetic chemical fertilizers, which can harm the 
environment and surrounding ecosystems (Rascovan et al., 
2016).

1.1 Plant Growth Promotional Activities of PGPF 

The plant growth promotional activities of PGPF are attributed 
to the production of plant growth hormone and mineralization 
and as such many more. Research has consistently shown that 
PGPF play a significant role in enhancing various aspects of 
plant growth and development, including seed germination, 
seedling vigor, shoot and root growth, photosynthetic 
efficiency, flowering, and ultimately, crop yield (Hossain and 
Sultana, 2020) 

Production of Plant Growth Hormone
Plant growth hormones also called phytohormones help 
to regulate the growth of the plants through various 
developmental processes. Phytohormones, specifically 

auxins (IAA), gibberellins, and cytokinin can exogenously 
produce by Plant Growth-Promoting Fungi (PGPF) and play a 
pivotal role in regulating plant growth and development. IAA 
and gibberellins are particularly significant, as they induce 
crucial physiological responses during various stages of plant 
growth (Islam et al., 2014). The production of IAA, a highly 
important and widely distributed phytohormone, has been 
reported in several fungi, including Trichoderma, Penicillium, 
Aspergillus, Fusarium, Talaromyces, and Mortierella, in host 
plants such as chickpea, rice, and wheat, resulting in enhanced 
growth and yield (Abri et al., 2015; Kumar et al., 2017; Murali 
et al., 2021). Gibberellic acid (GA) is a phytohormone of 
significance, produced by various fungi, including Fusarium, 
Aspergillus, and Penicillium, which contributes substantially 
to plant growth and developmental processes, in addition to 
conferring tolerance to abiotic stress (Syamsia et al., 2021). 
Notably, the GA produced by Cladosporium species in wheat 
and cucumber plants has been demonstrated to enhance 
plant growth (Hamayun et al., 2010). Moreover, endophytic 
fungi, such as Penicillium citrinum and Aspergillus fumigatus, 
have been reported to promote plant growth by secreting GAs 
in the rhizosphere, thereby stimulating plant development 
and growth (Ahmad et al., 2010). Another important plant 
growth regulator, cytokinin (predominantly zeatin), elicited 
by Piriformospora spp., Phoma spp., and Trichoderma 
spp. caused growth promotion in melon and Arabidopsis 
(Martínez-Medina et al., 2014; (Hossain and Sultana 2020; 
Speakman and Kruger 1984). 

Mineralization
Mineral availability in the rhizosphere is controlled by 
combined effects of soil properties, plant characteristics, and 
root-microorganism interactions (Jones et al., 2004; Rengel 
and Marschner, 2005). Rhizospheric fungi can enhance 
mineral uptake and availability, compensating for deficiencies 
through their symbiotic relationship with plant roots.

Phosphorous Solubilization
Plant Growth-Promoting Fungi (PGPF) in the rhizosphere 
significantly increase phosphorus (P) availability for plants 
by solubilizing phosphate compounds. Research has shown 
that Phosphate-Solubilizing Fungi (PSF) can convert insoluble 
phosphate into soluble forms, providing a promising 
alternative to phosphorus fertilizers (Alam et al., 2002; Chabot 
et al., 1996; Pal 1998). The fungi achieve this by producing 
various organic acids like tartaric acid, succinic acid, oxalic acid, 
malic acid, 2-ketogluconic acid, glyoxylic acid, gluconic acid, 
fumaric acid, citric acid and alpha-ketobutyric acid and enzyme 
phosphatase (Devi et al., 2020). All the release compounds 
solubilize the phosphorus and avail the soluble inorganic 
form that can be assimilated by the plants. A number of fungal 
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species including P. bilaji, Penicillium spp. (Patil et al. 2012), P. 
oxalicum (Li et al. 2016a) Aspergillus niger, Penicillium notatum 
(Din et al. 2019; Malviya et al. 2011), Aspergillus awamori (Jain 
et al. 2012a), Penicillium bilaii (Ram et al. 2015), Trichosporon 
beigelii, Rhodotrula aurantiaca, Cryptococcus luteolus, 
Zygoascus hellenicus, P. purpurogenum var. rubrisclerotium, 
Neosartorya fisheri, and Candida montana (Gizaw et al. 
2017), Talaromyces aurantiacus, Aspergillus neoniger (Zhang 
et al. 2018a), and Trichoderma spp. (Bononi et al. 2020) 
have been reported for the solubilization of phosphorus. 
Rhizospheric fungi Penicillium, Aspergillus, Trichoderma, 
Phoma, Rhizoctonia, Rhizopus, and Alternaria have been 
documented for their efficiency in solubilizing the insoluble 
phosphate (Alori et al., 2017; Dotaniya and Meena 2015). 
For the potassium solubilizination we can use large amount 
of microorganism like as Aspergillus spp., Agrobacterium 
tumefaciens, B. pumilus, B. subtilis, B. circulans, B. edaphicus, 
B. mucilaginosus, Flavobacterium spp. and Rhizobium spp. 
(Gundala et al. 2013; Keshavarz Zarjani et al. 2013; Maurya 
et al. 2015; Meena et al. 2014a; Meena et al. 2014b). This 
potash- solubilizing biofertilizer can be applied in crop 
production and yield combination with potassium solubilizing 
microbiome are Azospririllium, Azotobacter, Azospirillum, 
Acetobacter and Rhizobium (Bahadur et al. 2016). Among the 
PGPF, different Trichoderma strains have been exploited to 
enhance mineralization and mineral absorption of Fe, N, P, 
and K, and increase the accessibility of ammonium, nitrogen, 
zinc, copper, iron, and manganese (Molla et al., 2012). 

1.2 Management of Disease

The use of Plant Growth-Promoting Fungi (PGPF) in plants 
is environmentally friendly approach to manage diseases, 
which triggers a long-lasting activation of innate immunity of 
plants. Apart from promoting plant growth, PGPF employs 
various strategies to protect plants from pathogens by 
inducing defence resistance. The primary mechanism of 
PGPF in sustainable disease management involves colonizing 
plant roots, facilitating nutrient uptake, and stimulating plant 
growth (Hossain et al., 2017a, b; Murali et al., 2013). The key 
disease management strategies employed by PGPF can be 
summarized as follows:

Antagonism
The bio-control mechanism against disease-causing 
pathogens can be achieved through the antagonistic efficacy 
of microorganisms. PGPF exerts its bio-control mechanism 
through multiple strategies, including antibiosis, competition, 
and parasitism. Antibiosis occurs through the production of 
antibiotics and biosurfactants, which inhibit pathogen growth. 
Competition ensues as PGPF competes with pathogens for 

colonization sites, nutrients, and minerals. Additionally, PGPF 
produces extracellular cell wall-degrading enzymes, such as 
chitinase and β-1,3-glucanase, which break down pathogen 
cell walls, ultimately reducing damage to plants (Berg et al., 
2005). Different PGPF, namely, Trichoderma, Gliocladium 
virens, Phoma sp., Fusarium equiseti, and Penicillium 
simplicissimum have been reported to be antagonistic 
against Rhizoctonia solani, Pythium aphanidermatum, 
Pythium irregulare, Sclerotium rolfsii, Fusarium oxysporum, 
Pseudomonas syringae, and Colletotrichum orbiculare 
(Lewis et al., 1998; Murali et al., 2021). Patale and Mukadam 
(2011) have successfully tested the antagonistic activity of 
Trichoderma viride and Trichoderma harzianum against 
seven pathogenic fungi, namely, Aspergillus niger, A. flavus, 
Phytophthora spp., Fusarium oxysporum, Rhizoctonia 
solani, Penicillium notatum, and Alternaria solani. Gliovirin, 
an antibiotic produced by Gliocladium virens, was shown to 
inhibit the growth of Pythium ultimum (Howell and Stipanovic 
1983).

PGPF and induced resistance
Induced resistance is triggered by pathogens or insects, 
activating defensive compounds. It has two categories: 
Induced Systemic Resistance (ISR) and Systemic Acquired 
Resistance (SAR). ISR is activated through the jasmonate 
pathway (Cong and Lingyun, 2019), triggered by pathogens, 
drought, herbivores, and mechanical injuries. SAR is regulated 
by the salicylic acid-dependent signaling pathway, involving 
local and systemic increases in salicylic acid, leading to the 
promotion of pathogenesis-related proteins (Backer et al., 
2019). PGPF can elevate plant’s defence against insects and 
diseases by triggering resistance or activating natural defence 
responses (Adesemoye and Kloepper, 2009). The level of 
induced resistance in plants can vary depending on factors 
such as the source, type, and intensity of stimuli (Aranega-
Bou et al., 2014). Trichoderma strains inoculated to the 
rhizosphere protect host plants against numerous pathogens 
including bacteria, and fungi, due to the induction of resistance 
responses similar to the hypersensitive mechanism, SAR and 
ISR in plants (Singh et al. 2016;  Jyoti et al., 2014), as peroxidase 
reactive oxygen species (ROS) activity was triggered by T. 
virens in cotton plants reported by Singh et al. (2016).The 
use of non-pathogenic strains of F. oxysporum to control 
wilt disease has been detected for many crops (Ahmad et al., 
2018). Pythium oligandrum has shown the ability to control 
soil-borne phytopathogens either in the laboratory or in 
the field. P. oligandrum oospores have been used as seed 
treatments that reduce damping-off disease in sugarbeet 
caused by P. ultimum (Rocha et al., 2019). Also, P. nunn is an 
antagonistic fungus or mycoparasite of pathogens such as 
Pythium ultimum, P. aphanidermatum P. vexans, Rhizoctonia 

Review Article

3www.directivepublications.org

https://www.directivepublications.org/


Annals Of Agricultural Science And Technology 

solani, Phytophthora parasitica, and P. cinnamomi. Moreover, 
Aspergillus and Penicillium species were effective against the 
white-rot disease caused by basidiomycetes (Kowalczyk et al., 
2019). 
Penicillium oxalicum, a plant growth promoting fungus 
(PGPF) isolated from pearl millet rhizosphere soil, exhibited 
a considerable increase in chitinase activity (Murali and 
Amruthesh 2015). Trichoderma atroviride TRS25 increased 
PPO and PAL enzyme activity when the cucumber plant was 
inoculated with Rhizoctonia solani (Nawrocka et al., 2018). 
Trichoderma spp. is widely studied for their role in controlling 
the phytopathogen by the production of cell wall degrading 
enzymes such as cellulases, chitinases, and glucanases 
(Nogueira-Lopez et al., 2020).

Figure 1: PGPF in contributing overall growth of the plant 
through direct and indirect mechanisms (Mandal P and Tiru 
Z, 2024).

Bioformulations 
Biocontrol agents (bio-agent) comprising fungi have become 
attractive in terms of sustainable management of diseases 
and improved quality of crop productivity (Hussain et al., 
2020). The antagonistic property of PGPF can be successfully 
exploited through proper identification of efficient bio-control 
agents, their multiplication, and formulation for delivery. A 
large number of bio-based products are being produced and 
sold worldwide in the form of granules, wettable powders, 
dusts, and aqueous or oil-based liquid products using 
different carriers to control fungal pathogens (Ardakani et al., 
2009; Nega 2014). The application of Trichoderma-based bio-
fertilizer (composted of cattle manure + inoculum) not only 
produced the antifungal compound which may suppress the 
pathogen but potentially improved grassland biomass (Zhang 
et al., 2018). Bio-organic fertilizers (BOFs) enriched with 

Trichoderma and animal manure have been found not only 
to cause plant growth promotion but also found to have the 
controlling effect against Fusarium wilt in cucumber plants 
(Chen et al., 2011; Zhang et al., 2013, 2016). The foliar sprays 
of the liquid formulation of Penicillium oxalicum (6 X 106 
CFU ml−1) with sodium alginate (0.5%) and Tween 80 (0.01%) 
substantially improved the yield and acted as biofungicide for 
controlling mango malformation (Haggag and El Soud, 2013). 

1.3 Abiotic Stress Management 
Plant growth promoting fungi (PGPF) are recognised for 
alleviating a variety of abiotic challenges (heavy metal 
stress, water stress, temperature stress, and salt stress). 
Penicillium species isolated from groudnut rhizosphere soil 
were reported to improve salinity tolerance in sesame plants, 
as well as disease resistance and plant growth promotion 
(Radhakrishnan et al., 2014). Trichoderma harzianum promotes 
root growth and aids in water absorption and nutrient intake 
during osmotic stress. Distinct strain of Trichoderma has 
been carefully studied for its ability to mitigate oxidative, 
salinity, drought, and osmotic stress in plants (Zaidi et al., 
2014). Microsphaeropsis, Mucor, Steganosporium, Phoma, 
Aspergillus, Alternaria, and Peyronellaea have been shown to 
protect Arabidopsis plants from heavy metal buildup (Murali 
et al., 2021). Trichoderma has been reported to assist plants 
increase the activity of antioxidant enzymes, hence protecting 
plants from ROS production and membrane damage in 
stressful conditions (Guler et al., 2016).

Conclusion and Future Prospects 

Unlocking the benefits of Plant Growth-Promoting Fungi (PGPF) 
is crucial for developing innovative strategies to enhance 
crop yields and effectively manage crop diseases, leading 
to improved agricultural productivity and sustainability. 
Despite their potential, Plant Growth-Promoting Fungi (PGPF) 
face challenges in practical applications due to inconsistent 
performance, likely caused by genetic, environmental, and 
other factors. In order to popularize the widespread use of 
PGPF, the development of some innovative and effective 
techniques for their mass culture, formulation, and application 
of these fungi are urgently needed to be addressed. Advanced 
molecular tools and techniques can give more insight into 
mechanisms and outcomes of plant-microbial interactions. 
Additionally, biotechnological innovations, such as genetic 
modification and gene transfer, can enhance PGPF’s 
benefits, leading to more promising and effective solutions 
for widespread adoption. PGPFs are successfully used in 
many countries, but some still rely on chemical fungicides. 
Addressing challenges and limitations is crucial to promote 
wider adoption and sustainable agriculture.
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