Annals of Dermatological Science

DIRECTIVE
PUBLICATIONS

ISSN 2831-8129

Research Article

Incorporating Preservatives And Additives On Aloe Vera Leaf Gel For Microbiological Stability And Oxidative Resistance During Storage: Wound Healing Assay In Vivo.

Halima Chernane¹, Mohamed Sbahi², Assmaa Choukri², Elmehdi Darrag³, Aayah Hammoumi²*

- ¹ Laboratory of Physical Chemistry of Materials and Environment, Department of Chemistry, University Cadi Ayyad, Faculty of Science Semlalia, BP 2390, Marrakech, Morocco.
- ² Laboratory Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, University Cadi Ayyad, Faculty of Science Semlalia, BP 2390, Marrakech, Morocco.
- ³ Laboratory of Applied Chemistry and Biomass, Department of Chemistry, University Cadi Ayyad, Faculty of Science Semlalia, BP 2390, Marrakech, Morocco

Abstract

The therapeutic properties of Aloe vera gel are widely recognized. However, it should be stabilized immediately after extraction to avoid its rapid deterioration upon exposure to environmental conditions. In this study, the fresh gel was stabibized by incorporating benzoic acid (0.1 %), vitamin E (300 ppm) and xanthium gum (0.2 %) as preservatives and additives. Then, we monitored pH change, total antioxidant activity and microbial growth throughout the storage at 4°C and 25°C. At 4°C, the stabilized gel with preservatives showed the best antioxidative stability with maintaining the percentage DPPH inhibition up to 50 % after 30 days of storage Adding benzoic acid on fresh gel as an antimicrobial and maintaining an acidic pH (3.57-3.74) during storage were found to be effective against the development of spoilage micro-organisms. Unlike, the no stabilized gels which showed a microbial contamination with an increase in pH values. Furthermore, the healing effectiveness of the stable gel applied topically one daily to mice's skin wounds until wound closure was assessed by wound contraction every 2 days. Saline solution and Madécassol® cream are used as negative and positive controls respectively. The stable gel used at both concentration on mice groups showed a significant effect on wound closure rate and the shortened healing process compared to control groups. The wound healing began on the 2th post operative day with an increase in wound contraction from 70 and 75 % to 100 % on the 10th day. Thus, our stabilized gel maintained its wound healing efficacy.

Keywords: Aloe vera leaf gel; stabilization; antioxidative stability; microbiological stability; therapeutic efficacy; wound healing.

INTRODUCTION

The *Aloe vera* (A. Barbadensis Miller) is a succulent plant of Liliaceae family that grows in warm tropical and subtropical areas under drought conditions. Now, this plant is distributed all over the world for their therapeutic and cosmetics benefits [1]. The leaves were considered the most important part of the plant. A. vera gel is a mucilaginous jelly obtained from fresh leaves has been widely used in pharmaceutical, nutraceutical and cosmeceutical industries [2-5]. It is a potent source of numerous functional bioactive and nutrients compounds such as polysaccharides, vitamins, enzymes, minerals, sugars, amino-acids, glycoproteins, hormones, phytosterols and other chemicals compounds that were associated to its biological

and functional activities [6-9]. Those includes wound healing, anti-inflammatory, anti-microbial, anti-oxidant, immune-boosting, anti-cancer, anti-diabetic, anti-aging and sunburn relief [10-19]. Therefore, A. vera gel has been used as wound healing agent [20-24] and as a natural antimicrobial [25-27] in a variety of wound care products and pharmaceutical formulations such as wound dressing, cotton fabric, hydrogel, alginate-based film, balm, ointment and cream. The gel can promote wound healing and prevent microbial growth in wounds without activating the immune response [24]. The several clinical studies of *A. vera* gel and derived products have reported a significant effect on wound repair mechanisms when they are used as a treatment [28-35]. Their therapeutic efficacy was associated with the improvement

*Corresponding Author: Aayah Hammoumi, Laboratory Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, University Cadi Ayyad, Faculty of Science Semlalia, BP 2390, Marrakech, Morocco. Email: a.hammoumi@uca.ac.ma

Received: 22-Mar-2025, Manuscript No. AODS-4679; Editor Assigned: 23-Mar-2025; Reviewed: 14-Apr-2025, QC No. AODS-4679; Published: 06-May-2025, DOI: 10.52338/aods.2025.4679

Citation: Aayah Hammoumi, Incorporating Preservatives And Additives On Aloe Vera Leaf Gel For Microbiological Stability And Oxidative Resistance During Storage: Wound Healing Assay In Vivo. Annals of Dermatological Science. 2025 May; 11(1). doi: 10.52338/aods.2025.4679.

Copyright © 2025 Aayah Hammoumi, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

of skin hydration, oxygenation, nutrition, to stimulate epithelialization, fibroblast proliferation, collagen synthesis and to anti-inflammatory, antioxidant, antimicrobial and immunomodulatory effects. [22, 29, 36]. However, the limiting biomedical and therapeutic applications of A. vera gel include the quick oxidation, fast changing color, odor, viscosity and high enzymatic activity [37-39]. Its stability is very influenced by the exposition of air, light, heat and microbes [37]. The oxidative phenomenon involves decomposition, a physical, chemical and biological deterioration which lead to the loss of the therapeutic activities [39 - 42]. Hence, A. vera gel should be processed by appropriate techniques to avoid change in physicochemical properties and to preserve the bioactive entities. There are various processing techniques applied for sterilizing and stabilizing the A. vera gel such as heating and incorporating of chemical preservatives and additives. The disadvantage of heating processes is to destroy the bioactive compounds of the gel with the physicochemical alterations [5, 43 - 45]. Other processing was applied to A. vera gel by adding chelating agent, antioxidants, antimicrobials, chemical stabilizers and natural preservatives to ensure its stability in the dark and cold conditions [39, 46, 47]. Nevertheless, these techniques can be performed with the addition of citric acid, benzoic acid, sodium benzoate, potassium sorbate as anti-microbials and ascorbic acid, vitamin E, vitamin C as antioxidants. Additionally, gums such as guar, xanthium and Arabic gum, being gelling agents dissolved and stables in acidic conditions to increase the viscosity of the gel and improve its texture. The objective of this study was to determine the effect of preservatives and additives incorporation (benzoic acid: 0.1%, vitamin E: 300 ppm and xanthium gum: 0.2%) and storage temperature (4°C and 25°C) in stabilizing fresh A. vera gel during 60 days. The pH change, total antioxidant activity and microbial growth were evaluated throughout storage period at temperature 4°C and 25°C. Furthermore, to asses the healing effectiveness of the stable gel applied topically and daily at 50% and 100% concentrations to mice's skin wounds by wound contraction and closure rate on the 2nd, 4th, 6th, 8th, 10th, 12th and 14th days. The present study was performed to demonstrate whether the processed A. vera gel still has the therapeutic properties as wound healing agent.

MATERIALS AND METHODS

Aloe vera gel samples preparation and treatment

Aloe vera leaves were obtained from "Arborescence" greenhouse in Marrakesh, Morocco, as the supplier. Species identification was conducted by Professor Lahcen Ouhmane from Cadi Ayyad University. The species has been classified as A. barbadensis Miller L. A voucher specimen is archived in laboratory pharmacology, neurobiology, anthropology and environment. Traditional hand filleted method was adopted

to ovoid contamination by the yellow latex. The fresh leaves aged 3 and 4 years were selected and cleaned by dipping in the sodium hypochlorite solution (0.1%) and washing with distilled water. Then, they were cut in the base and leaved to drain vertically for two hours to remove the exudate. The epidermic was separated from the pulp, which was extracted, homogenized and filtered to remove the fibrous materials and to obtain a mucilaginous gel. The A. vera gels were immediately subjected to treatments with and without adding preservatives and stabilizers. These included benzoic acid (0.1%), vitamin E (α-tocopheryl acetate, 300 ppm) and xanthium gum (0.2%). The prepared A. vera gels samples codes are: GP4 and GP25 means A. vera gel treated with preservatives and stored at 4°C and 25°C respectively. GWP4 and GWP25 means A. vera gel without preservatives and stored at 4°C and 25°C respectively. All A. vera gels samples were stored on amber-colored glass bottles to prevent the effect light. The operations of gel extraction and stabilization were performed under sterile conditions. The analysis of pH, the total antioxidant activity and the microbial growth were carried out periodically every week throughout the storage at temperature 4°C and 25°C. The experiments were performed on all A. vera gel samples (with and without preservatives) and were done in triplicate.

Microbiological analysis and pH determination

The pH was directly measured using pH-meter (Instruments Hanna pH 211 with microprocessor). The microbiological determination was done using the method described by [48] with some modifications. The analysis was performed in triplicate on all A. vera gel samples with and without preservatives at different temperatures (4°C and 25°C), to assess the presence of mesophilic and lactic aerobic bacteria, yeasts and molds. One milliliter of each sample was obtained aseptically and homogenized with 9 mL of the physiological water (9%°). Further decimal dilutions were performed with the same diluent, and triplicates of at least three appropriate dilutions were seeded to suitable media. To count mesophilic and lactic aerobic bacteria, 100 µL of each dilution were pour-plated in the nutrient agar and in the MRS medium (Man, Rogosa, Sharpe) agar respectively. After incubation at 30°C for 48 h, mesophilic and lactic bacteria counts were performed. To count mold and yeast, 100 µL of the initial dilutions were inoculated by the same technique in a LB (Luria Basal) medium with an antibacterial agent (Chloramphenicol) 0.5%. The plates were then incubated at 25°C for 3 to 5 days. The microbiological data were transformed into logarithms of the number of units forming colonies (log cfu/ml). The limit of detection was 10 cfu/ml (1.0 log cfu/ml).

Diphenyl-1-1picrylhydrazyl (DPPH)° radical scavenging assay

Total antioxidant activity was determined in triplicate by using the DPPH method [49] based on the percentage DPPH radical inhibition. A. vera gel samples were filtered and diluted at different concentration and transferred into test tubes. 1 ml of DPPH radical prepared in Ethanol (0.006%) was added to test tubes with 1 ml of sample. The reaction mixture was mixed on a vortex for few seconds and left to stand at room temperature in the dark for 30 min. The absorbance was measured at 517 nm using the spectrophotometer that was calibrated with Ethanol. The control sample was prepared without addition of the sample. All solvent and reagents were purchased from Sigma Aldrich.

Total antioxidant activity was expressed at the percentage inhibition of the DPPH radical and determined by follow Equation: DPPH inhibition (%) = [1 - (Abs sample / Abs control)] x 100 Abs is absorbance at 517nm.

Wound Healing test

Twenty BALB/c adult female mice with weights of (20 to 25 g) were collected from the departmental animal house of the faculty of Sciences Semlalia, Marrakesh, Morocco and randomly divided into four groups: C⁻, C⁺, AVG 50 and AVG 100 with five animals per group. Group (C⁻) serves as the negative control and received saline solution. Group (C⁺) serves as positive control group and with a topical application of Madécassol® wound healing cream. **AVG 50** and **AVG 100** groups with a topical application of processed *A. vera* gel at 50% and 100% concentration respectively.

The mice were anesthetized with isoflurane under aseptic conditions. Then, the back of each animal was shaved using sterile blades and two skin wounds were made on both back sides of the median lines using a 6 mm skin biopsy forceps. The wounds of all animals were cleaned before receiving the first application of the *A. vera* gel (0.5 g) or the Madécassol® cream that was applied topically once a day on each wound until the 14th day. The animals were housed in normal conditions and received water and food ad libitum.

Evaluation of wound healing

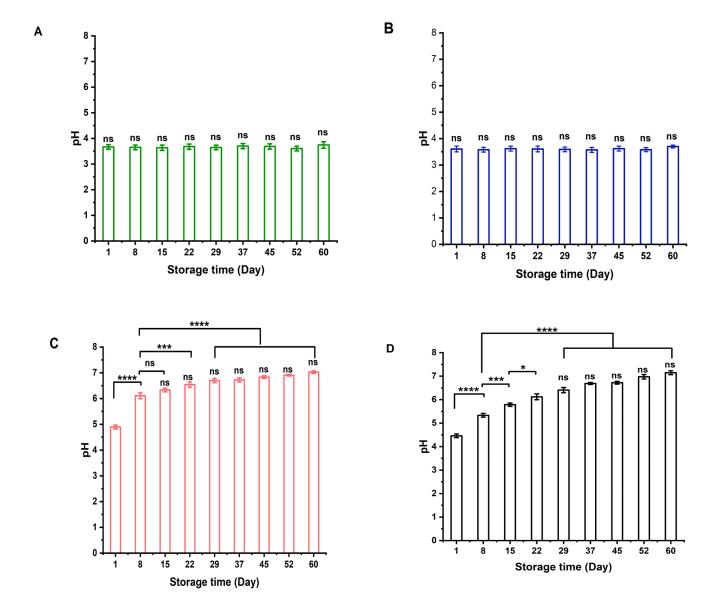
The excisional cutaneous wounds were photographed regularly every two days and the wound contraction was calculated based on wound aeras (mm²) measurements relative to the original dimensions [50] using the following equation:

Wound contraction (%) =
$$\frac{AW_1 - AW_2}{AW_1}$$

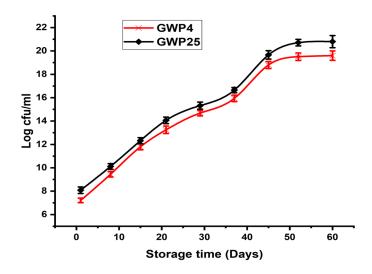
AW1 is the initial wound area and AW2 is the wound area after post operative days: 2nd, 4th, 6th, 8th, 10th, 12th and 14th days.

Statistical Analysis

The statistical analysis for all results were performed using Graph Pad Prism V10. Three ways ANOVA test (adding preservatives, storage time and storage temperature) were used to analyze results from experiments performed on A. vera gel samples, while results from at least experiment (Wound healing test in mice) were analyzed using Two ANOVA test (Treatment and Time), followed by Tukey's test for multiple comparisons. All values were expressed as mean \pm SD and results were significant at P < 0.05.

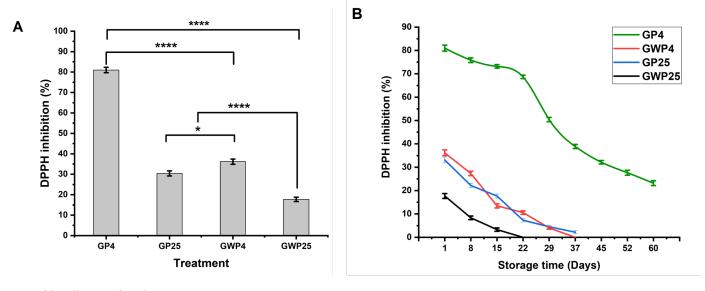

RESULTS AND DISCUSSIONS

Change of pH change and microbial stability of A. vera gels during storage


The pH values of GP4 and of GP25 A. vera gels showed no significant difference during storage (Fig. 1 A and B). The values were between 3.66 \pm 0.09, and 3.74 \pm 0.13 for GP4, and between 3.60 \pm 0.11 and 3.70 \pm 0.05 for GP25. The pH of these gels was more acidic due to adding benzoic acid as microbial preservative. The acidulant pH allows to inhibit enzymes and improve the stability of the A. vera gel [2]. However, the pH values of untreated gels GWP4 and GWP25 stored at 4°C and 25°C respectively showed the significant differences (p < 0,0001) throughout storage (Fig. 1 C and D). At the beginning of storage, the pH of each gel was acidic with a value of $4.89 \pm$ 0.075 for GWP4 and 4.46 ± 0.08 for GWP25 like the pH of fresh A. vera gel that was between 4 and 5. Then, the pH increased significantly (p < 0,0001) during storage from 4.89 ± 0.075 to 7.02 ± 0.050 for GWP4 and from 4.46 ± 0.08 to 7.14 ± 0.083 for GWP25. The high values of pH indicate the deterioration of A. vera gels due to the microorganism activity as shown in figure (Fig.2). An interaction effect between pH and storage period on total aerobic mesophilic bacteria (TAMB) was observed for GWP4 and GWP25 untreated gels, which was more important with an increase in pH values. In respect of storage period, the microbial growth increased gradually. The mean initial population of TAMB increased from 7.21 ± 0.20 to 19.6 \pm 0.40 log cfu /ml for GWP4 gels and, from 8.08 \pm 0.52 to 20.80 \pm 0.2 log cfu /ml for GWP25 gels after 60 days of storage. Yet, no BL, yeasts and molds were detected at all storage period. At the first day of storage of untreated A. vera gel, the aerobic mesophilic bacteria count was higher than 2 log cfu /mL, which is considered as the upper acceptable levels according to Word Health Organization WHO (1999 [51]). Other researchers [52] have reported that the aerobic mesophilic bacteria count in no processed A. vera gel with high hydrostatic pression (HHP) ranging from 3.41 log cfu / ml to 8 log cfu /ml. The microbial population determined was dominated by aerobic mesophilic bacteria that consisted of gram negative and rod-shaped bacteria (Enterobacteriaceae) such as: Rhanella aquatilis, Pantoea agglomerans, Enterobacter

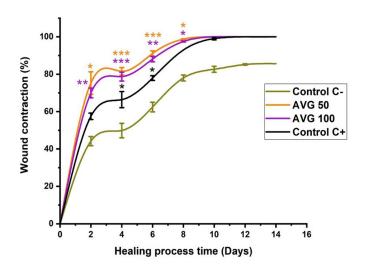
amnigenus, Serratia plymuthica and other isolates belonging to the genera Pseudomonas such as P. fluorescence and P. putida. Concerning microbiological analysis of our stabilized gels with preservatives GP4 and GP25, no microbials were detected during the whole storage period at both temperature 4°C and 25°C. This indicates the efficacy of benzoic acid (0.1%) incorporated to fresh *A. vera* gels as microbial preservative to avoid the growth of microorganisms and to improve the microbiological stability. Our result consisted in the study of [39] that showed the inhibition of natural microbial growth during storage temperature at 7°C and 25°C in A. vera gel stabilized by incorporating citric acid as microbial preservative. In addition, it reported that *A. vera* gel exhibited antimicrobial activity with lowering the growth of microorganisms during storage [53, 54, 10, 13, 46]. In our study, the adding of benzoic acid on fresh *A. vera* gel was effective for delaying microbial proliferation. The presence of antimicrobial compounds, the organic acid and the compounds with acidic properties in fresh *A. vera* gel act synergistically to make microorganisms inactive and to extend its microbiological shelf-life during storage [7, 55, 56].

Figure.1 pH change of all A. vera gels (A) GP4, (B) GP25, (C) GWP4 and (D) GWP25 during storage at 4° C and 25° C. GP4 and GP25: treated gels with preservatives and stored at 4° C and 25° C respectively, GWP4 and GWP25: untreated gels and stored at 4° C and 25° C respectively. Results are expressed as mean \pm SD (n = 3). P values were calculated using three ways ANOVA followed with Tukey's test for multiple comparison (no = not significant, the significant differences: *p < 0.05, *** p < 0.001, **** p < 0.0001)


Figure.2 Growth evolution of total aerobic mesophilic bacteria during storage in untreated A. vera gels GWP4 and GWP25 stored at 4° C and 25° C respectively. Data are expressed as (mean \pm SD) (n=3), the significant differences (P < 0,0001) at different storage time. Total aerobic mesophilic bacteria are not detected in GP4 and GP25 treated *A. vera* gels stored at 4° C and 25° C respectively, No BL, yeast and molds were detected at all storage time.

Total antioxidant activity of treated and untreated A. vera gels during storage

A decreasing trend on the total activity antioxidant of all treated and untreated gels with preservatives, stored at 4°C and 25°C as a result of the length of storage time (Fig. 3 A and B). At the first day of storage, the GP4 treated gel stored at 4°C showed the high significant antioxidant capacity (p < 0.0001) with 81.04 ± 1.32 % DPPH inhibitions compared to GWP4 untreated gel stored at the same temperature with 36.30 ± 1.26 % DPPH inhibitions and to GP25 treated and GWP25 untreated gels stored at 25°C with 30.42 ± 1.25 and 17.7 ± 1.05 % DPPH inhibitions respectively, The least untreated gel stored at 25°C showed a great decrease of antioxidant activities from 17.7 ± 1.05 to 6.78 ± 0.76 % DPPH inhibition after 8 days of storage with complete oxidation and deterioration. However, when we incorporated preservatives on the fresh gel and we stored it at the same temperature (25°C), the antioxidant capacity of GP25 treated gel decreased significantly (p < 0.0001) from 30.42 ± 1.26 to 7.32 ± 0.76 % DPPH inhibition after 30 days. Furthermore, our results showed that GWP4 untreated gel stored at 4°C a decrease in the antioxidant activities from 36.17 ± 1.26 to 8.97 ± 0.86 % DPPH inhibition after 21 days of storage. At the same storage temperature (4° C), the GP4 treated gel with preservatives showed a significant decrease (p < 0.0001) of antioxidant activities from 81 ± 1.32 to 22.50 ± 1.10 % DPPH inhibition after 60 days with maintaining up to 50 % during 30 days of storage. Our result was consisted in the study of [57], that have also reported the high initial total antioxidant capacity of 80.25 % DPPH inhibition in processed A. vera gel with high hydrostatic pressure and stored at 4°C. The degree of DPPH inhibition indicates the scavenging of antioxidant compounds of A. vera gel such as polysaccharides, β carotene, folic acid, E and C vitamins and B12 [13, 58, 59]. These compounds react with DPPH (free radical scavenging) reducing a number of DPPH molecules. Another study of [60] showed a decreasing trend of the antioxidant capacity of pasteurized A. vera gels during storage at 4°C and 25°C up to 30 days from 54 ± 0.85 to 23 ± 2.8 with loss of than 50 % DPPH inhibitions. The same study has also reported that the thermal treatment by pasteurization was the main cause of depletion of the natural antioxidants of A. vera gel such as vitamin C and glucomannan during storage at both temperature 4°C and 25°C with a great decrease at 25°C. Our results showed that vitamin E (300 ppm) incorporation on fresh gel as antioxidant can improve the oxidative resistance for our treated gels GP4 during storage particularly at 4°C. Besides this, the decreasing rate of antioxidant capacity was more considerable for GWP25 untreated gel stored at 25°C than the GWP4 untreated gel stored at 4°C due to direct influence of storage temperature. However, the storage at 4°C allowed to maintain the antioxidant capacity of GP4 treated gel up to 50 % of DPPH inhibition for 30 days, while the GP25 treated gel stored at 25°C loss 75 % of the antioxidant capacity. The study of [37] has also reported that the addition of BHT (750 ppm) as antioxidant on A. vera gel, with administrating nitrogen gas prevent the oxidation process and maintain the physicochemical properties a maximum 4 weeks.


Figure. 3 Total activity antioxidant of all *A. vera* gels: GP4, GP25, GWP4 and GWP25 during storage at 4° C and 25° C after one day of storage (A) and at different storage time (B). GP4 and GP25 treated gels with preservatives and stored at 4° C and 25° C respectively. GWP4 and GWP25: untreated gels and stored at 4° C and 25° C respectively. The DPPH inhibition (%) are expressed as (mean \pm SD) (n=3), P values were calculated using three ways ANOVA followed with Tukey's test for multiple comparison (significant differences at $^{\circ}$ P < 0.05, **** P < 0.0001).

Wound healing evaluation

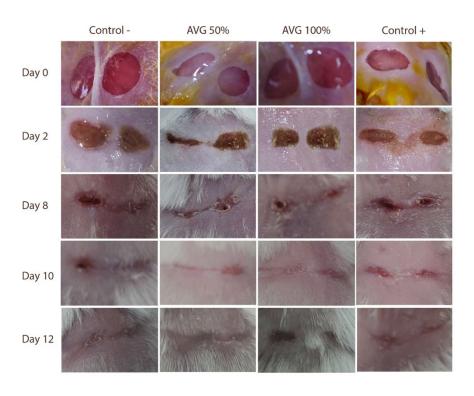

The two ways ANOVA analysis of the percentage of wound contraction during healing process time revealed significant differences among the treatment factors: time (F (1.258, 5.031) = 4628, p < 0.0001) and treatment (F (1.051, 4.203) = 186.7, p = 0.001), as well as the interaction between both factors (F (2.382, 9.529) = 45.31, p < 0.0001). The multiple comparison analysis confirmed that during healing process, an increasing trend of wound closure was observed on all mice groups: AVG 50, AVG 100, C+ and C- (**Fig. 4**). On the 2nd post-operative day, the wound contraction percentages of AVG 50 group that received a topical application of *A. vera* gel at 50% concentration, were significantly higher (75%) than control ones (C+) (57.5%) (p = 0.0057, q = 10.67) and (C-) (44.20%) (p = 0.0105, q = 9.049). Similar results were observed for the AVG 100 group, which showed significant results in comparison with the control groups (C+) (p = 0.0004, q = 20.66) and (C-) (p = 0.0019, q = 14.24).

Figure. 4 Wound contraction percentages of all mice groups during on 2^{th} , 4^{th} , 6^{th} , 8^{th} , 10^{th} , 12^{th} and 14^{th} days during healing process. The different treatments are described as follows: Group (C·) serves as the negative control and received saline solution, Group (C·) serves as positive control group with a topical application of Madécassol® wound healing cream, AVG 50 and AVG 100 groups with a topical application of processed *A. vera* gel at 50% and 100% concentration respectively. Results are expressed as (mean \pm SD) (n = 5) and compared statistically between mice groups during healing process. P values were calculated using two ways ANOVA followed with Tukey's test for multiple comparison. The significant differences: *p < 0.05, ** p < 0.01, *** p < 0.001.

According to the results of figure 4 and to macroscopic wounds observation (Fig. 5), there was an improvement rate and an accelerated wound healing process in AVG 50 and AVG 100 mice groups. The healing of the last two groups during two post-operative days, showed a wound contraction of 75% and 70% respectively. On the 10th day, 100% wound contraction has completely occurred. However, the wound healing of positive control group (C*), which received a topical application of Madécassol® cream was better than negative one (C·). The stable A. vera gel used topically at both concentrations of 50% and 100% on wounded mice groups provide a good healing effect and more rapid wound closure. Several studies have also reported the promoting healing of topical application of A. vera gel on experimental animal models [61 - 66]. A study of [65] investigating the wound healing efficiency of A. vera gel in an excision wound model in rats has shown a faster wound healing. This process began to occur on 4th post-operative day and an improvement of the open wounds on 14th days with an increase in wound contraction rate. It also, reported an accelerating epithelization and fibrosis and with less inflammation and neovascularization during wound healing process. The A. vera gel could stimulate the expression of growth factor genes in the damaged skin of animals and play a crucial role in the wound healing process [65]. In our study, the stable A. vera gel action on wound cure indicates the shorter days of healing compared to the previous study. Another study of [66] related to A. vera gel action on excisional wounds in adult rat models has also shown an improved rate of wound healing in shorter days (9 days). Furthermore, an improvement occurred in the hematological blood profile. Based on our results and on the other studies, the stable A. vera gel applied topically in mice's wounds has a positive effect on wound healing with more rapid area contraction and can preserve its bioactive molecules. These can act synergically and exhibited the wound occlusive properties on cutaneous wounds of mice during wound healing process. The biochemicals compounds include acemannan, phytosterols, glycoprotein, brady-kinases, minerals, vitamins A, C and E, Amino-acids, saponins, gibberellins, stimulate formation of epidermal tissues, increase collagen and proteoglycan production and remodeling, while improving wound tensile and inhibiting inflammation [7, 13, 67, 68]. Additionally, the active molecules present in A. vera penetrate the tissue, to increase blood flow, to stimulate repair wound mechanisms and to prevent microbial growth during wound healing process. Because, A. vera gel has the excellent antimicrobial activities against bacteria, fungi and viruses [69 - 72], it can also be used as anti-microbial and as disinfecting agents to treat infections in wound's site [73].

Figure. 5 Progression of wound closure area of all mice groups **AVG 50**, **AVG 100**, Control C+ and Control C- on 2th,4th, 8th, 10th and 12th days during wound healing process. Photographed images of wounds created on the mice groups AVG 50, AVG100, Control C⁺ and the Control C⁻ from day 1 till the day 12 of wound closure.

CONCLUSION

Based on this research, it can be concluded that the incorporation of benzoic acid, vitamin E and xanthium gum as stabilizers on fresh A. vera gel improved the oxidative resistance and ensured the microbiological stability during storage at temperature 4°C. The stable gel maintained the healing properties and provided a good effect on cutaneous wounds of mice. It can be used as an economic and an effective therapeutic option for wound healing as well. Further researches need to be done in order to assess the efficacy of topical application of A. vera gel on cutaneous wounds as a healing agent by histological, biochemical and microbiological approaches.

Acknowledgements

The authors are grateful to the Center of Analyses and Characterization (CAC) at the Cady Ayyad University, Morocco.

Ethical Approval

All animal studies on wound healing followed the protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Alabama (Protocol # 18-08-1483) [74]. The study was also approved at national level by the Research Laboratory Council Committee of the Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco.

Consent to Participate

All research participants provided their informed consent freely and voluntarily to take part in the study.

Consent to Publish

All authors have provided their consent for publication in the journal "Applied Biochemistry and Biotechnology."

Authors Contributions

H. Chernane: Conceptualization, Methodology, Writing – original draft, Writing – review & editing. M. **Sbahi**: Conceptualization, Methodology, Statistical Analyses, Writing – original draft. A. Choukri: Conceptualization, Methodology, Writing – original draft. **E. Darrag**: Conceptualization, Methodology. A. **Hammoumi**: Conceptualization, Methodology, Writing – original draft, Writing – review & editing.

Funding

No funding.

Competing Interests

The authors declare no competing interests.

Availability of data and materials The data used to support the findings of this study are available from the corresponding author upon request.

REFERENCES

- Steenkamp, V., & Stewart, M.J. (2007). Medicinal applications and toxicological activities of Aloe products. Pharmaceutical Biology, 45(5), 411–20. https://doi. org/10.1080/13880200701215307
- Rahman, S., Carter, P., &Bhattarai, N. (2017). Aloe vera for tissue Engineering Applications. J. Funct Biomater, 8 – 6.
- Kahramanoğlu, İ., Chen, C., Chen, J., & Wan, C. (2019). Chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera gel. Agronomy, 9 (12), 831. https://doi.org/10.3390/agronomy9120831
- Sbhatu, D. B., Berhe, G. G., Hndeya, A. G., Abdu, A., Mulugeta, A., & Abraha, H. B. (2020). Hair washing formulations from aloe elegans todaro gel: the potential for making hair shampoo. Adv. Pharmacol. Pharm. Sci, 1–9. https://doi.org/10.1155/2020/8835120
- Nicolau-Lapena, I., Colas-Meda, P., Alegre, I., Aguilo-Aguayo, I., Muranyi, P., & Vinas, I. (2021). Aloe vera gel: An update on its use as a functional edible coating to preserve fruits and vegetables. Progress in Organic Coatings, 151, 106007. https://doi.org/10.1016/j.porgcoat.2020.106007.
- Zapata, P.J., Navarro, D., Guillén, F., Castillo, S., Martínez-Romero, D., Valero, D., & Serrano, M. (2013). Characterisation of gels from different Aloe spp. as antifungal treatment: Potential crops for industrial applications. Industrial Crops and Products, 42, 223-230. https://doi.org/10.1016/j.indcrop.2012.06.002
- Salah, F., El Ghoul, Y., Mahdi, A., Mahjoub, H., Jarroux, N., & Sakli, F. (2017). Effect of deacetylation degree on the anti-bacterial antibiofilm activity of acemannan from Aloe vera. Industrial crops and Products, 103, 13-18
- 8. Puia, A., Pui, C., Mois, E., Graur, F., Fetti, A., & Flora, M. (2021). The phytochemical constituents and therapeutic uses of genus Aloe: A review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2(49), 12332. https://doi.org/10.15835/nbha49212332
- 9. Babu, T.N., & Noor, A. (2020). Bioactive constituents of the genus Aloe and their potential therapeutic and pharmacological applications: a review. J. Appl. Pharm. Sci, 10 (11), 133–145. https://doi.org/10.7324/japs.2020.101118

- Ali, S.W., Purwar, R., Joshi, M., & Rajendran, S. (2014).
 Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose, 21(3), 2063–72. https://doi.org/10.1007/s10570-014-0175-9
- Ufnal, M., Zadlo, A., and Ostaszewski, R. (2015). TMAO:
 a small molecule of great expectations. Nutrition,
 31 (11-12), 1317–1323. https://doi.org/10.1016/j.
 nut.2015.05.006
- Chauhan, P., and Kumar, A. (2020). Development of a microbial coating for cellulosic surface using aloe vera and silane. Carbohydrate Polymer Technologies and Applications, (1), 100015. https://doi.org/10.1016/j. carpta.2020.100015.
- 13. Sánchez, M., González-Burgos, E., Iglesias, I., and Gómez-Serranillos, M. P. (2020). Pharmacological update properties of Aloe vera and its major active constituents. Molecules, 25, (6), 1324. https://doi.org/10.3390/molecules25061324
- 14. Habibi, A, Yazdani, N., Chatrabnous, N., Koushesh, Saba, M., & Vahdati, K. (2021). Inhibition of browning via aqueous gel solution of Aloe vera: a new method for preserving fresh fruits as a case study on fresh kernels of Persian walnu. J. Food Sci. Technol. 59 (2021), 2784–2793, https://doi.org/10.1007/s13197-021-05301-3
- 15. Tian, B., and Hua, Y. (2021). Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe emodin on DNA. FoodChem, 91(3), 413-418.
- Mondal, M. I. H., Saha, J., & Rahman, A. (2021). Functional applications of Aloe vera on textiles: A review. Journal of Polymers and the Environment, 29, 993–09.https://doi. org/10.1007/s10924-020-01931-4
- 17. Liang, J., Cui, L, Li, J., Guan, S., Zhang, K., & Li, J. (2021). Aloe vera: A Medicinal plant used in skin Wounds Healing. Tissue Eng Part B Rev. 27(5), 455-74. https://doi.org/10.1089/ten.TEB.2020.0236
- 18. Treutlein, J., Smith, G.F., vanwyk, B.E., Wink, W. (2023). "Phylogenetic relationships in Asphodelaceae (Aloaceae) inferred from chloroplast DNA sequences (rbcl, matk) and from genomic finger-printing (ISSR)". Taxon, 52 (2), 193–207
- 19. Paul, N., Crepeau, M. (2023), Mixer design optimization for high solids contents media: methodology and application to the, Pechiney's high density predesilication

- process, Light Metals, The Minerals, Metals & Materials Society, 43.
- 20. Davis, B., and Goux, W.J. (2009). Single-Laboratory Validation of an NMR Method for the Determination of Aloe vera Polysaccharide in Pharmaceutical Formulations. J. AOAC Int, 92, 1607–1616
- 21. Jiao, P., and Jia, Q. (2010). Quantitative H-NMR Spectrometry Method for Quality Control of Aloe Vera Products. J. AOAC Int, 93, 842–848
- 22. Prakash, C., Sukumar, N., Ramesh, P., & Kumar, S.K. (2021). Development and characterization of wound dressing material coated with natural extracts of curcumin, Aloe vera and chitosan solution enhanced with rhEGF (REGEN-D). Journal of Natural Fibers, 18(12), 2019–32. https://doi.org/10.1080/15440478.2019.1710738
- 23. Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 17, 111490.https://doi.org/10.1016/j.eurpolymj.2022. 111490
- 24. Maduha, L., & Patnaik, A. (2023). A review of wound dressing treated with Aloe vera and its application on natural fabrics. Journal of Natural Fibers. 20 (1), 2190190. https://doi.org/10.1080/115440478
- 25. Naseri-Nosar, M., & Ziora, Z.M. (2018). Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydrate Polymers, 189,379–98. https://doi.org/10.1016/j.carbpol.2018.02.003.
- 26. Mohseni, M., Shamloo, A., Aghababaie, Z., Afjoul, H.,.Abdi, S., Moravvej, H., & Vossoughi, M. (2019). A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 564, 350–58. https://doi.org/ 10.1016/j.ijpharm.2019.04.068.
- 27. Korra, C. G. (2022). Application of fungi resistance on cotton fabric using aloe vera active component. Research Journal of Textile and Apparel, 27,74–94. https://doi.org/10.1108/RJTA-07-2021-0095
- Khorasani, G, Hosseinimehr, S.J., Azadbakht, M., Zamani, A., & Mahdavi, M.R. (2009). Aloe versus silver sulfadiazine creams for second-degree burns: a randomized controlled study. Surg Today. 39, 587 91.https://doi.org/ 10.1007/s00595-008-3944-y. PubMed PMID: 19562446

29. Khan, A.W., Kotta, S., Ansari, S.H., Sharma, R.K., Kumar, A., & Ali, J. (2013). Formulation Development, Optimization and Evaluation of Aloe vera Gel for Wound Healing. Pharmacogn. Mag, 9, 6–10.

- 30. Eghdampour, F., Jahdie, F., Kheyrkhah, M., Taghizadeh, M., Naghizadeh, S., & Haghani, H. (2013). The effect of aloe vera ointment in wound healing of episiotomy among primiparous women. The Iranian Journal of Obstetrics, Gynecology and Infertility, 15, 25-31.
- 31. Molazem, Z., Mohseni, F., Younesi, M., & Keshavarzi, S. (2014). Aloe vera gel and cesarean wound healing; a randomized controlled clinical trial. Glob J Health Sci, (7), 203-9.https://doi.org/10.5539/gjhs.v7n1p203. PubMed PMID: 25560349
- 32. Babaei, K., Nejati, S., Najafi, B., Mohammadi, Khosh Boo, T., Ghesmati, F., & Firoozi, M. (2018). Studying the Effect of Aloe Vera Ointment on Wound Healing of CABG Surgery in Diabetic Patients. J Res Med Dent Sci, 6(1), 256–60.https://doi.org/10.24896/jrmds.20186141
- Burusapat, C., Supawan, M., Pruksapong, C., Pitiseree, A., & Suwan temee, (2018). C. Topical Aloe Vera Gel for Accelerated Wound Healing of Split-Thickness Skin Graft Donor Sites: A Double Blind, Randomized, Controlled Trial and Systematic Review. Plast Reconstr Surg, 142 (1), 217-26.https://doi.org/10.1097/PRS.0000000000004515
- Nizam, N. H., Rawi, N. F., Ramle, S. F., Aziz, A. A., Abdullah,
 C. K., Rashedi, A., & Kassim, M. H. (2021). Physical, thermal, mechanical, antimicrobial and physicochemical properties of starch-based film containing aloe vera: A review. Journal of Materials Research and Technology, (15), 1572–89. http://doc.org/10.1016/j.jmrt.2021.08.138
- Mohamad-Abadi, N.M., Haghighat, S., Tajimi-Riachi, M., Asgary, S., & Eghbali-Babadi, M. (2023). The efffect of Aloe vera gel on sapherous vein Harvest woiund Healing and local pain in Non-diabetic Patients Undergoing CABG Surgery: A clinical Trial. Published on line, 2023 January 24 (1),12766. https://doi.org/10.5812/semj-122766
- 36. Somboonwong, J.; & Thanamittramanee, S. (2000). Therapeutic Effects of Aloe vera on Cutaneous Microcirculation and Wound Healing in Second Degree Burn Model in Rats. J. Med. Assoc. Thail. (83), 417–425.
- 37. Suriati, L. (2018). Studies the resistance to oxidation and the changes phases against the characteristic of physicochemical Aloe vera gel. J.Biol.Chem. Reserarch, 35 (2), 670-679.

- 38. Alvarado-Morales, G., Minjares-Fuentes, R., Contreras-Esquivel, J. C., Montanez, J., Meza-Velazquez, J. A., & Femenia, A. (2019). Application of thermosonication for Aloe vera (Aloe barbadensis Miller) juice processing: Impact on the functional properties and the main bioactive polysaccharides. Ultrasonics Sonochemistry, (56), 125–33. https://doc.org/10.1016/j. ultsonch.2019.03.030.
- 39. Suriati, L, Utama, I.M.S, Harsojuwono, B.A & Gunam, I.B.W. (2020). Incorporating additives for stability of Aloe gel potentially as an edible coating. AIMS Agriculture and Food, 5 (3), 327-336.
- 40. Bozzi, A., Perrin, C., & Austin S. (2007). Quality and authenticity of commercial aloe vera gel powders. Food Chem. 103(1): 22-33.
- 41. Nindo, C.I., Powers, J.R., & Tang, J. (2010). Thermal properties of Aloe Vera Powder and Rheology of Reconstituted Gels. American Society of Agricultural and Biological Engineers. 53 (4), 1193-1200.
- 42. He, Q., Changhong, L., Kojo, E., & Tian. Z. 2005. Quality and safety assurance in the processing of aloe vera juice. Food Control, 16(2), 95-104.
- 43. Xiu, L.C., Changhai, W., Yongmei, F., Zhaopu, L. (2006). Effect of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. J. Food Eng,75 (2), 245-251.
- 44. Minjares-Fuentes, R., Femenia, A., Comas-Serra, F., Rosselló, C., RodríguezGonzález, V. M., & González-Laredo, R. F. (2016). Effect of different drying procedures on physicochemical properties and flow behavior of Aloe vera (Aloe barbadensis Miller) gel. LWT, 74, 378– 386. https://doc.org/10.1016/j.lwt.2016.07.060
- 45. Athmaselvi, K.A., Sumitha, P., and Revathy, B. (2013). Development of Aloe vera based edible coating for tomato. International Agrophysics, 27(4), 369–375.
- 46. Nazemi, N., Khalighi-Sigaroodi, F., & Monfared, A. (2017). Processing and Stabilization of Aloe Vera leaf gel by adding chemical and natural preservatives. Reseach Journal of Pharmacognozy. (RJP). 4(supplement), 24.
- Sonawane, S. K., Gokhale, J. S., Mulla, M. Z., Kandu, V. R., & Patil, S. (2021). A comprehensive overview of functional and rheological properties of aloe vera and its application in foods. J. Food Sci. Technol. 58, 1217–1226. https://doi.org/10.1007/s13197-020-04661-6

- 48. Pochampally, R. (2008). Colony Forming Unit assays for MSCs. In D.J.Prockop.B.A. Bunnelly et D.G. Phinney (Eds), Mesenchynal Stem Cells: Methods and Protocols. Humana Press,83-91. https://doc.org/10.1007/978-1-60327-169-16
- 49. Tezcan, F., Gultekin-Ozguven, M., Diken, T., Ozcelik, B., & Erim, B. (2009). Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juice. Food Chemistry, 115, 873-7.
- Wong, V.W., Sorkin, M., Glotzbach, J.P., Longaker, M.T., & Gurtner, G.C. (2011). Surgical Approaches to create Murine Models of Humara Wound healing. Journal of Biomedicine and Biotechnology.https://doc. org/10.1155/2011/969618.
- 51. WHO. (1999), Aloe and Aloe Vera Gel: WHO Monographs on Selected Medicinal Plants. World Health Organization. Geneva, (1), 33-49.
- 52. Reyes, E.R.; Guanoquiza, M.I.; Tabilo-Munizaga, G.; Vega-Galvez, A.; Miranda, M.; & Pérez-Won, M. (2012). Microbiological stabilization of Aloe vera (Aloe barbadensis Miller) gel by high hydrostatic pressure treatment. International Journal of Food Microbiology, (3), 218–224.
- 53. Saritha, V., Anilakumar, K.R., & Khanum, F. (2010). Antioxidant and antibacterial activity of Aloe vera gel extracts, Int. J. Pharm. Biol. Arch, (1), 376–384.
- 54. Navarro, D., Díaz-Mula, H.M., Guill, F., Zapata, P.J., Castillo, S., Serrano, M., Valero, D., & Martínez-Romero, D. (2011). Reduction of nectarine decay caused by Rhizopus stolonifer, Botrytis cinerea and Penicillium digitatum with Aloe vera gel alone or with the addition of thymol, Int. J. Food Microbiol. 151, 241–246. https://doi.org/10.1016/j.ijfoodmicro.2011.09.009
- 55. Ferro VA, Bradbury F, & Cameron, P. (2003). In vitro susceptibilities of Shigella flexneri and Streptococcus pyogenes to inner gel of Aloe barbadensis Miller. Antimicrob Agents Chemother, 47(3), 1137–1139.
- 56. Bhat, Z.F., Kumar, S., & Kumar, P. (2015). Effect on Aloe vera gel on lipid stability and storage quality of chicken nuggets, Nutrition and Food Science, (45), 54 67.
- 57. Discalla, K., Vega-Galvez, A., Ah-Hen, K., Nunez-Mancilla, Y., Tabilo-Munuzagan, G., Perez-Won, M., & Giovagnoli, C. (2013). Chemical and physical properties of aloe vera

- after high hydrostatic processing. Food Science and Technology, 33 (1), 52-59.
- 58. Kardosova, A., & Machova, E. (2006). Antioxidant of medicinal plant polysaccharids. Filiterapia, 77, 367 373,
- 59. Radha, M.H & Laxmipriya, N.P. (2015). Evolution pf biological properties and clinical effectiveness of Aloevera: a systematic review. J Tradit Complement Med, 5, 21-26.
- Saberian, H., Hamidi-Esfahani, Z., & Abbasi, S. (2014).
 Effect of pasteurization and storage on bioactive components of Aloe vera gel. Nutrition & Food Science, 43(2), 175-183.
- 61. Mantalle, D., Gok, M.H., & Lennard, T.W. (2001). Adverse and beneficial effects of plant extracts on skin desorders. Adverse Drug React Toxicol Rev, 20 (2), 89-103.
- 62. Harita, Y., Yadav, K.C., Ravi Kumar, J., Ilias Basha, S., Deshmukh, G.R., Gujjula, R., Santhamma, B. (2012). Wound healing activity of topical application of Aloe vera gel in experimental animals models. In J. Pharma. Bio Sci, 3(2), 63-72.
- 63. Tarameshloo M., Nerouzian M., Zarein-Dolab S., Dadpay M., Mohsenifar J., & Gazor R. (2012°). Aloe vera gel and thyroid horman cream may improve wound healing in Wistars rats. Ant Cell Bio, 45,170-177.
- 64. Najafi, N., Arabi, M., & Jafarzadeh, H. (2014). Inducing effect of Aloe vera gel extract on epithelial growth factor receptor gene expression in cutaneous wounds of male mice Balb/C. J.Cell.Tissue. 5 (1), 53-61.
- 65. Istek, O., Tanrizever, M., Kucukler, S., Harabulut, B. & Cevic, A. (2023°). Comparison of the effects of Aloe vera gel and coconut oil on the healing of open wounds in rats. Veterinarni Medicina, 68 (01): 17-26.
- Perveeen, A., Abbas, S., Khan, S.U.; Mazhar, M., & Fiaz, A. (2023). Valuation of therapeutic efficacy of Aloe vera gel for excisional wound healing mechanisms using animal model. Biological and Clinical Sciences Reseach journal, 340. https://doi.org/10.54112/bcsrj.v2023i1.340
- 67. Choi, S.W., Son, B.W., Son, Y.S., Prak, Y.I., Lee, S.K., & Chung, M.H. (2001). The wound healing effect of a glycoprotein fraction isolated from Aloe vera. British Journal of Dermatology, 145, 535-545.

68. Liu, C., Cui, Y., Pi, F., Cheng, Y., Guo, Y., & Qian, H. (2019). Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from Aloe vera: A review. Molecules, 24(8), 1554. https://doi.org/10.3390/molecules24081554

- 69. Alemdar, S., & Agaoglu, S. (2009). Investigation of in vitro antimicrobial activity of Aloe vera juice. Journal of Animal and Veterinary Advances, 8 (1), 99-102.
- 70. Das, S, Mishra, B., Gill, K., Ashraf, M.S., Singh, A.K., Sinha, M., & Dey, S. (2011). Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from Aloe vera leaf gel. International Journal of Biological Macromolecules, 48(1), 38-43. https://doi.org/10.1016/j.ijbiomac
- Kamr, A., Arbaga, A., El-Bahrawy, A., Elsify, A., Khaled, H., & Hassan, H. (2020). The therapeutic efficacy of Aloe vera gel ointment on staphylococcal pyoderma in dogs. Veterinary World, 13(11), 2371-2380. https://doi. org/10.14202/VETWORLD.2020.2371-2380

- 72. Chang, L. X., Wang, C., Feng, Y., & Liu, Z. (2021). Effects of heat treatments on the stability of polysaccharides substances and barbaloin in gel juice from aloe vera Miller. J Food Eng. 75, 245–251.
- 73. Edis, Z., & Bloukh, S.H. (2020). Facile synthesis of antimicrobial aloe vera-"smart" triiodide-PVP biomaterials. Biomimetics. 5(3), 45. https://doi.org/10.3390/BIOMIMETICS5030045
- 74. Rowland, M.B., Moore, P.E., Bui, C., & Correll, R.N. (2023). Assessing wound closure in mice using skin-punch biopsy. STAR Protoc.17, 4(1),101989. https://doi.org/10.1016/j.xpro.2022.101989