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Abstract

The use of hyperspectral data for crop management and phenotyping while overcoming the difficulty of fluctuating atmospheric conditions is 
becoming more and more popular. Using a single spectrometer, the Piccolodual field-of-view device gathers up- and downwelling radiation 
almost simultaneously. For crop monitoring in extremely fluctuating atmospheric circumstances, such devices hold out a lot of potential. Here, 
a case study of assessing soybean plant numbers in early vegetative stages was used to illustrate the system’s usefulness from a tractor-
mounted boom. Two replicas of the same experiment are used to describe the Piccolo system and evaluate its performance under various sky 
conditions. Partial least squares regression (PLSR) was used to estimate the plant population, and models calibrated and validated under sunny 
and overcast or cloudy and sunny conditions, respectively, produced stable results. We demonstrate the Piccolo system’s operational viability 
for precision agricultural research and possible commercial applications, and we draw the conclusion that it is efficient for gathering data in a 
variety of atmospheric circumstances.
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INTRODUCTION

Precision agricultural research is increasingly using 
hyperspectral sensors [1,2]. Vegetation indices can be 
computed using hyperspectral data (hundreds of tiny bands) 
or the data itself, which simplifies the study but detracts 
from its depth and richness [3, 4].  It can be difficult to do 
hyperspectral measurements of plant canopy using the 
sun as the light source [5], particularly while atmospheric 
conditions are changing. This necessitates regular reference 
data collection by the same sensor or another one. In place 
of the conventional white reference, MacLellan and Malthus 
[6] proposed the idea of a spectrometer with an adual 
field-of-view that alternately gets upwelling (radiance) and 
downwelling (irradiance) data using a cosine response fore 
optic [7]. The Piccolo, an operational dual field-of-view system 
invented and presented by MacArthur et al. [8], was installed 
on a tractor in soybean experimental plots for the current 

study.The emergence rate of soybean seedlings is frequently 
slower than the seeding rate.  In order to inform decisions 
about replanting, it is necessary to evaluate plant populations 
at an early stage of development [9].
In order to extrapolate plants per unit area, the current 
population assessment methodology typically counts plants 
within representative quadrats and computes the mean of 
these samples [10].  Given the variety of existing techniques for 
estimating soybean populations and the urgency of obtaining 
this data, automating this process through crop reflectance 
sensing is an intriguing case study.  The density of maize 
seedlings has been evaluated using hyperspectral imaging 
[11].  Investigating the performance of a tractor-mounted 
Piccolo system in the presence of fluctuating atmospheric 
conditions was the aim of the current investigation.  Estimates 
of the soybean plant population were assessed early in the 
development process, when decisions about replanting have 
to be made, as a case study to test the system.Theoretically, the 
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Piccolo’s principle of operation dictates that measurements 
and analyses ought to be uniform irrespective of atmospheric 
and light circumstances (i.e., a single prediction model that 
takes into account all light situations).

MATERIALS AND METHODS

Trial Design and Study Area
The University of Wisconsin Arlington Agriculture Research 
Station (43°1808” N, 89°2008” W) was the site of field 
tests in 2016.For the two cultivars (AG2433—Monsanto 
and P28T08R—DuPont Pioneer), tillage and row spacing 
treatments were used. For each of the primary impacts, 14 
seeding rates (3.7 to 51.8 seeds × 104 h−1) were used in order 
to create population heterogeneity.The plots were 7.6 m long 
and had either four 0.76 m or six 0.38 m rows. To make room 
for the tractor-mounted spectral system, driving alleys with 
soybean plants were dotted around the field (Figure 1a). Four 
early stages of development were covered by the spectral 
data collected throughout the trial’s replication (Table 1).The 
number of plants within 1.5 meters of the middle rows was 
used to calculate the plant populations (Table 1) for each plot.
Depending on the atmospheric conditions, the data collecting 
days were classified as either sunny or cloudy (Table 1).  Clear 
sky and cloudy, ranging from sporadic to completely covered, 
were considered sunny.

Gathering Spectral Data
The Piccolo hyperspectral system, which has a Flame (Ocean 
Optics, Inc., Dunedin, FL, USA) spectrometer with a spectral 
range of 340 to 1022 nm and an optical resolution of 1.33 nm 
full-width half-maximum interpolated to 1 nm spacing, was 
used to collect the canopy spectra of soybean seedlings.A 
hydraulically operated boom installed the Piccolo system 
on a tractor (Figure 1a).Protected by optical glass domes 
(Figure 1b) and equipped with shutters, the upwelling 
bare fiber saw the target with a 25◦ view angle, while the 
downwelling fiber looked up at the sky through a cosine 
corrected polytetrafluoroethylene fore-optic.Shutter activity 
and integration times were synchronized via a Raspberry 
Pi (Raspberry Pi Foundation, Cambridge, UK) single-board 
computer [8].The Pathfinder software (Trimble Inc., Sunnyvale, 
CA, USA) differentially adjusted the GPS (Geo 7x) data, and 
for 99.96% of the corrected positions, the estimated accuracy 
ranged from 0.05 to 0.15 m. Spectral data were linked to 
actual plot locations using the GPS data.  The field of vision 
at ground level was approximately 0.13 meters in radius, with 
the upwelling fiber focused on a soybean row approximately 
0.60 meters above the ground.  Two passes per plot each 
collection date permitted data collection from the two center 
rows, and spectral data were gathered within two hours of 
solar noon.  In order to optimize the unsaturated signal, the 

integration periods were set at 4–6 ms for downwelling and 
13–15 ms for upwelling.  Four measurement sequences were 
used to generate one spectral sample: (1) upwelling dark 
current; (2) upwelling target measurement;(4) downwelling 
dark current; (3) downwelling target.  Using two fiber optics 
(400 µm and 600 µm, respectively) that fully covered the 1000 
µm long (25 µm wide) spectrometer slit, the spectrometer 
collected upwelling and downwelling data nearly concurrently 
(~0.6 s).  The air effect on relative reflectance data was reduced 
by such quick observations from both fore optics using the 
same spectrometer (Figure 1c–e).  Thirteen spectral samples 
were taken per plot row, with the tractor speed set at 0.22 m 
s−1 and the actual duration between the starting sites of two 
consecutive spectral samples being around 2.6 s.

Statistical Analysis and Data Processing
In order to calculate relative reflectance, dark current was 
first subtracted from upwelling radiance and downwelling 
irradiance. The radiance was then divided by the irradiance 
while taking field of view, fiber diameter, and integration times 
into consideration (Python scripts are available at https://
github.com/prabu-github/tracolo); the formula is shown 
in [13].  After a 2nd order polynomial and a 5 nm filter [14] 
smoothed the 1 nm spectra, the relative reflectance in the 
400–900 nm range was averaged per plot at 5 nm intervals.
All potential two-band correlations with the recorded plant 
population were examined using the normalized difference 
spectral index (NDSI)[15] analysis. The estimation of soybean 
plant populations as a function of the hyperspectral readings 
was done using partial least squares regression (PLSR)[16], 
a useful forecasting method for spectral reflective data. 
The datasets underwent independent, cross-validation, and 
calibration. For 75% of the samples, cross-validation and 
calibration were performed. For a random sample distribution 
of calibration (75%) and cross validation (25%), the calibration 
and cross validation procedure was repeated 100 times, 
yielding 100 models. These models produced estimated plant 
population numbers after being independently validated 
for the samples excluded from the calibration and cross-
validation procedures. The mean estimated population was 
calculated by averaging the estimated values, and the R2 and 
root mean square error (RMSE) of calibration, cross validation, 
and validation were obtained by regressing the estimated 
versus measured plant population values. 

RESULTS AND DISCUSSION

PLSR was used to forecast plant populations at the V1 and V3 
stages of development. In one trial duplicate, this was done 
in the sun, while in the other, it was done in the cloud shows 
that there were no trends in residuals between sunny and 
cloudy projected vs. observed plant populations, indicating 
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that atmospheric conditions had no effect on the quality of 
predictions.  A reduced RMSE and a higher R2 of independent 
validation were seen in the later stages of development, as 
anticipated given the population count time (Table 1). With 
both sunny and overcast plots overestimating V1 plant 
populations, the V1 predictions performed worse than the V3 
predictions. This was anticipated since smaller V1 seedlings 
are less likely to be in Piccolo’s line of vision.  Figure 2b shows 
some underestimate for V3 plots with more than ~30 plants 
× 104 h−1(hectare−1).Higher populations are more likely 
to overlap at this stage of development because seedling 
foliage overlaps more than that of earlier stage plants. The 
models based on sunny and cloudy data (V1 and V3) had 
comparable prediction quality to those based on cloudy alone 
(V2; Figure 2c), according to the prediction vs. measured plant 
population for development stage (treatments and replicates 
pooled together). As well as development stage models (4) 
and all-data-together (1), Table S1 displays the R2 and root 
mean square error (RMSE) of all calibration cross validation 
and validation PLSR models down to treatment level (32). 
Neither of the two until therapies showed a significant 
advantage. Different row spacing and tillage treatments were 
pooled in the development phases and all-data models; this 
generalization lowers the quality of the models, particularly 
in the RMSE values.The generic models’ RMSE values were 
over ten times greater than the treatment-specific models’ 
RMSE values.For 15 of the 32 datasets examined, the NDSI 
identified 565 and 710 nm as the top 10 band combinations.
In maize stand counts, Thorp, Steward, Kaleita, and Batchelor 
[11] bolster the significance of green- and red-edge bands.  
Additionally, the spectral system’s capacity to deliver high-
quality data in both sunny and cloudy settings is supported 
by the NDSI[565, 710] plant population estimation models.
The figures in Figure S1 and Table S2 illustrate all of the 
NDSI[565, 710] models.  The PLSR models outperformed the 
NDSI in population assessment, demonstrating the benefit of 
numerous narrow bands over a pair of bands.
By doing away with the requirement for regular reference 
standard measurements, the Piccolo system offered an 
effective way to gather plant reflectance.  Before the current 
investigation started, the system’s performance was evaluated 
by measuring a patch of grass close to solar noon in both 
sunny and cloudy situations.  The fore optics were shifted a 
few centimeters to prevent the target from being shaded by 
the gadget.  As anticipated, sunny conditions resulted in much 
higher photon counts for both upwelling and downwelling 
than cloudy ones (Figure 1c–e).  With a small variation in the 
near-infrared regions, the relative reflectance spectra were 
almost the same in the visible and red-edge wavelengths.

CONCLUSIONS

It was discovered that the Piccolo dual field-of-view 
spectrometer system worked well for gathering data under 
dynamic air circumstances. This illustrates how it can be used 
for precision agriculture research and possible commercial 
uses.  For the plant population assessment case study, (1) V2 
and V3 are the best development stages for plant population 
assessment specifically for treatments (row spacing and 
tillage; Table S1), while V1, V2, and V3 models are of similar 
quality for pooling treatments per development stage; and (2) 
hyperspectral data produced better population assessment 
than NDSI [565, 710].  It will be necessary to test the device 
for a variety of applications once devices like the Piccolo are 
integrated into the typical array of crop monitoring equipment 
installed on tractors or other agricultural equipment, even 
though alternative technologies might be appropriate for crop 
population monitoring.To investigate aerial implementation 
and more effective data collection, software and hardware 
changes would be necessary.
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