Improving cancer research Multiforme with High-Z DNA Nanoparticles for Tumour Collider Treatment Optimisation Using High-Z DNA Particles Radiation Drugs.

Clirezor Feidari

California South University, 14731 Comet St. Irvine, CA 92604, USA.

*Corresponding Author :
Clirezor Feidari, California South University, 14731 Comet St. Irvine, CA 92604, USA.

Received : September 05, 2023
Accepted: September 06, 2023
Published : October 10, 2023

Abstract

Current radiation therapy approaches, such as targeted molecule treatment, hadron treatment, or radiosensitization of cells by high-Z nanoparticles, seem to demand a strong desire or formal decision regarding something of radiation track structure at the nanoscale (related to ideas about how things function or why they happen).

KeyWords : Hadrontherapy, Radiotherapy, Cancer, Treatment, Cure, Tumors, Oncology, Particle Therapy.

Short Communication

Current radiation therapy approaches, such as targeted molecule treatment, hadron treatment, or radiosensitization of cells by high-Z nanoparticles, seem to demand a strong desire or formal decision regarding something of radiation track structure at the nanoscale (related to ideas about how things function or why they happen). Sorting out the amount, totality, or type of radiation damage to cells and DNA depends on this. Through the Geant4-DNA Package, Geant4 has been providing material science models since approximately 2007 to represent molecular interactions in fluid water at the nanoscale scale. This package now provides a comprehensive set of models that illustrate the event-by-event (related to power supplying attractive fields) interactions of particles with flowing water, along with enhancements for the demonstration of water radiolysis.

Geant4-DNA has been used as a (display of looking for answers to urgent problems and trying to find the truth about something) tool in kV and MV outer pillar radiotherapy, hadron treatments using protons and heavy particles, designated treatments, and radiobiology studies since it was delivered. It has been tested against reference exploratory estimations and, when available, with other track structure Monte Carlo programmes. While the books have comprehensively described the Geant4-DNA material science models and radiolysis displaying capacities to do things, this survey paper summarises and analyses a variety of delegate papers with the goal of providing an overview of a) mathematical representations of (related to the body capability of living things) that focus down to the DNA size, and b).

REFERENCES

4. Heidari A. Extraction and Preconcentration of N-Tolyl-Sulfonyl-Phosphoramid-Saeure-Dichlorid as an Anti-


18. Heidari A. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 2016;7:292.

19. Heidari A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 2016;7: e112.


27. Heidari A. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 2016;1: 2.

