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INTRODUCTION

In general, the quality and quantity of world agricultural 
production are greatly diminished by environmental stresses 
(de Cássia et. al. 2018, Gharsallah et. al. 2016, Foolad 2007, 
Karan and Subudhi 2012). Besides, 71% crop yield reduction 
is occurring by abiotic stresses (Ashraf et al., 2010). According 
to numerous estimation the probable yield reductions are 
17% due to drought, 20% due to salinity, 40% due to high 
temperature, 15% due to low temperature, and 8% due 
to other factors (, Ashraf & Harris, 2005). Approx. 20 % of 
irrigated land are affected by the soil salinity which terms 
as a global complication that both affects and drops crop 
yields remarkably (Qadir et al., 2014). Most notably, natural 
salinity and human interferences  continuously transforming 
the arable land is into saline which is anticipated to deluge 

global effects, that consequence up to 50% land drop within 
2050 (Saha et al., 2010; Hasanuzzaman et al., 2013). Salinity 
stress sometimes called ‘Secrete Murder’ as it destroys plants 
and other organisms grown on it. ‘White Death’ also used as 
synonym of it describing white images of lifeless shining lands 
studded with dead trees. Salinity is one of the most serious 
problems eradicating global agricultural production (Foolad 
2007, Gharsallah al. 2016, Foolad 2007, Karan and Subudhi 
2012).  It is claimed that, worldwide, 800 million ha of land 
and 32 million ha of agricultural land are salt-affected (FAO 
2015). The closest areas to the seashore are more prone to 
salinity where salinity reduces agricultural productions to 
a large scale. Salt problem in agricultural crops, commonly 
develops in the irrigated areas where salts from the irrigation 
water build up in the root zone. Irrigated land occupied 
about 17% of global cultivated land, which merely accords 
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Global food output is being negatively impacted by salinity, which is regarded as a major abiotic constraint. Numerous studies have been conducted 
to identify the methods by which plants tolerate salt stress, and the results have shown some key enzymes and altered biochemical processes 
that may be responsible for agricultural plants’ resistance. Studies that have been carried out for the last tanners ordinarily have observed 
the development of salt tolerant cultivars via traditional means, as well as extemporized by modern epoch molecular tools and techniques. 
Environmental stresses considerably and notably affect the productivity of plants in several ways. Generally, plant growth and development is 
greatly affected by the process of osmotic stress under soil salinity and Na+ and Cl– ions are toxic as well as having injurious effects that results 
in the imbalance among SO42– and Mg2+ ions as well as significant nutrient elements in plants. As a number of mechanisms reveal the salinity 
stress response as well as salinity tolerance processes, the effect is called polygenic which includes beneficial compatible solutes or osmolytes, 
polyamines, reactive oxygen species (ROS) as well as antioxidant defensive processes, transport and compartmentalization of injurious toxic 
ions. In order to identify the cue factors regarding the particular retaliations or cumulating toxic ions, it is crucial to understand the whole process 
accountable for growth restriction as well as retarding production of plants with the further span of retaliating the same. The present review will 
try to summarize the physiological as well as antioxidant defense mechanisms in plants upon salt toxicity.  Explaining salinity tolerance as well 
as its later perspectives and applications in screening for salt tolerance will also be a venture of the present study.
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30% of total crofter production (Hillel, 2000). Crop cultivation 
under irrigated land is enhancing day by day, which results 
enhancement of salinity of these lands, creating a major upset 
for global food reliability. The extremity of Salinity stress 
inhibits crop production by changing numerous physiological 
and metabolic activities [Souid et. al. 2018, R. A. James et.al, 
2011, A. Rahnama et. al , 2010, Munns, 2005, Rozema  et.al, 
2008]. Tremendous reduction in Plant growth and yield is 
caused by several manners under salinity stress.
Sodium Chloride presents as vast percentage in nature playing 
dominant roles in affecting natural plant production mainly in 
two consecutive manners: osmotic stress and ionic toxicity. 
Osmotic pressure occurred more in plant cells compared to 
surrounding soil solution in absence of salts in soil. On the 
other hand, osmotic pressure exceeds in soil solution than 
plant cells under salnity which limits plants ability to absorb 
water and minerals like K+ and Ca2+ (Glenn, Brown & Khan, 
1997; Munns, James & Läuchli, 2006). As Na+ and Cl- has the 
ability to draw up directly into the cells creating toxic effects 
on cell membranes, so on the metabolic cytosolic activities 
(Greenway and Munns, 1980; Hasegawa et al., 2000; Zhu, 
2001).
Reduced cell expansion, assimilate production and membrane 
function, as well as decreased cytosolic metabolism and 
production of reactive oxygen intermediates (ROSs) are 
considered as some secondary effects of salinity. Even 
extremity of salinity can results in plant death. Few plants 
are able to fight against salinity as well as related stresses by 
several external and internal mechanisms to evade  internal 
water loss through dehydration and stimulation of sufficient 
water uptake,  amend leaf architecture,  amplified extent of 
assimilates owed to roots,  reduced the rate of limb proceeds 
and developmental rates, dormancy as well as  osmotic 
amendment, etc. (Chaves et al. 2003). 
Plants with deep root system, ability to reserve more water-
soluble carbohydrates at the base of tiller as well as fast 
nitrogen uptake, are some superior characters relevant to 
salt tolerance has been observed in perennial forage grasses 
in the south of France (Volaire et al. 1998). 
Generally, amassing of solutes with low molecular weight as 
well as inorganic ions are superficial osmotic acclimatizing 
events to abolish osmotic hazards of the tissue (Gagneul et 
al. 2007, Ahmad et al., 2010a; Ahmad et al., 2010b; Ashraf 
& Foolad, 2007; Devi & Prasad, 1998; Foyer et al., 1994). 
A number of plants in addition to halophytes are able to 
withstand ion toxicity and sufficient water uptake of even 
under extremity of salinity (Munns 2002). Osmotic adjustment 
stabilizes metabolic processes in tissue as well as also enables 
regrowth upon rewetting (Morgan 1984).

SALINITY AS A MAJOR CURTAILMENT TO PLANTS

Generally, soil salinity can be occurred and exert its 
influence on plants in two processes: first present of a high 
concentration of salts in the soil, that converts it unable for 
roots to absorb water (osmotic stress), as well as prominence 
in a high percentage of toxic salts within the plant (ion 
toxicity). In the outer surface of roots, salts  cause reduction 
of cell growth and metabolism; although, accumulation of 
toxic salts requires time to exert into plants and after that 
they become able to affect plant functions (Hasanuzzaman et 
al., 2013, Munns & Tester, 2008, Gharsallah al. 2016, Foolad 
2007, Karan and Subudhi 2012).
The physiological performances of crop plants are 
considerably as well as adversely affected by salt stress 
imposition that even turn  plant  to death as a result of a 
drastic reduction of growth also due to injury in the metabolic 
activity(Hasanuzzaman et al., 2013, Gharsallah al. 2016, Foolad 
2007, Karan and Subudhi 2012). Usually, the nature of plants, 
plant species, duration, stage, concentration, as well as mode 
of salt application to the crops, all are considered as essential 
factors for estimating the intensity and diminishing effects of 
salinity to the plants (Dugasa et. al. 2018).
Soil salinity is considered as a serious drastic abiotic stress 
as it reins majority of crops grown worldwide (Gharsallah al. 
2016, Foolad 2007, Karan and Subudhi 2012). Irrigation system 
and removal of plants from lands may be a reason for it with 
many other well-known anthropogenic causes (Munns et.al 
2008). About 20% of total global cultivable land are now under 
salinity affected, drastically harassing agricultural production 
and now it has become a more prominent universal issue 
(Flowers & Yeo, 1995). Accumulation of dissolved salts within 
the soil or irrigation water to a harmful concentration causes 
reduction of plant growth and development referred as salinity 
stress (Gorham, 1992). Plant growth and developments are 
largely governed by several physiological processes which 
are mostly inhibited under salinity needed to be properly 
scrutinized to understand tolerance mechanisms in plants 
under salinity (Asgari, 2012). Aggregation of Salts is increased 
to an extreme level to the plants root zone causing salinity-
induced stress (Zhang et al., 2012). For this, reduction in water 
uptake from soil surface creates water stress, while sufficient 
water present in the root zone. Water absorption of saline 
soils requires an extra energy expenditure. Thus, higher 
salinity will always lead to decreased levels of water as well 
as inducing analogous stresses like water and osmotic stress 
(Bauder & Brock, 1992). 
High osmotic pressure is created by the high salt 
concentrations in soil limits water uptake by seeds (Khan & 
Weber, 2008), responsible for the metabolism of nucleic acid 
digestion (Gomes-Filho et al., 2008), metabolism of protein 
changes (Dantas et al., 2007) as well as hormonal offset are 
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aggravated (Khan & Rizvi, 1994), results in the destruction of the ability to utilize seed stores (Othman et al., 2006). There 
are also varying intramural (plant) and external (natural) processes influencing seed germination under saline conditions  
incorporating the nature of seed layer, seed torpidity, seedling power, seed polymorphism, seed age, water, gases (Mguis et  
al., 2013), light and temperature (Wahid et al., 2011). Higher concentrations of the salt results hyper ionic and hyperosmotic 
stress, even cause’s death of the plant. Membrane layer harm, nutrient unevenness, distorted levels of enzymatic hindrance, 
developmental regulators and metabolic abnormality, including photosynthesis, which at last prompts plant demise may be 
occurred from the impact of salinity (Hasanuzzaman et al., 2012; Mahajan & Tuteja, 2005).
Na+ and Cl– ions are the most deleterious for plants under salinity (Tavakkoli et al., 2010). Several complex processes such as 
photosynthesis is also affected by the biotic as well as abiotic stresses influencing various major components like photosynthetic 
pigments, photo systems, the electron transport system, CO2 reduction pathways, etc. All kinds of Stresses can affect any of 
these components, reducing the photosynthetic capacity of plants. Utilization of protein kinases, for example MAPKs and 
transcription factors are most important to eliminate this harm (Ashraf et al., 2013; Saad et al., 2013; Zhang L et al., 2012).
Importance of ion exchange during salinity on the facilitating plant development has observed by Rajendran et al. (2009). They 
have observed accumulation of hazardous ions after 2–4 weeks of exposure of salt stress. The stress caused by ions (Na+ and/
or Cl–) overlaps with the osmotic impacts and demonstrates more hereditary variety than osmotic impacts (Dugasa et. al. 2018, 
Munns et al., 2002).Reactive oxygen species (ROS) induced oxidative spoil to lipids, proteins, in addition to DNA. The cellular 
hurt takes place in different ways. (Choudhury et. al., 2017, Mursu et al., 2008; Souid et. al. 2018, R. A. James et.al, 2011, A. 
Rahnama et. al , 2010, Munns, 2005, Rozema  et.al, 2008). 

Figure 1. Effects of ROS at high concentrations on plants under salinity stress.

PLANT SPECIES HAVING DIVERSE POTENTIALS UNDER SALINE ENVIRONMENT

Plants are classified as halophytes and glycophytes according to their relevant capacity to sprout under salinity. Halophytes 
have the intrinsic ability to grow and survive till the entire life cycle under saline environment (around 500 mm NaCl) (Zeng et. 
al. 2018, Colmer, Flowers & Munns, 2006). On the contrary, Glycophytes are unable to sustain at extreme salt concentration, 
so also known as non-halophytes. The majority of cultivable crops are glycophytes, but few of them like sugar beet, barley; 
wheat, etc. has ability to cope with salt to some extent. From another point, halophytes are able to accumulate toxic salts in 
the leaves in spite of the internal parts to avoid injury as plants are not able to possess a high concentration of salts except 
slashing (Zeng et. al. 2018, Volkmar et al., 1998). And therefore, these consequences suggest different strategies relating the 
adaptive mechanisms of halophytes and glycophytes in a distinct manner. Usually halophytes are not able to survive at high 
level of salinity without balancing the concentrated salt ions as osmoticant materials to some extent. For lack all the above 
trivial processes, glycophytes are not able to survive in saline conditions whereas halophytes survive. But both the glycophyte 
and halophyte are equally sensitive to salts if we want to study some sensitive processes like photosynthesis and respiration 
(Volkmar et al., 1998) under salinity.  
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RETALIATIONS UNDER SALT STRESS (PHYSIOLOGICAL AND OXIDATIVE VIEWS)

Ion homeostasis including compartmentalization, efficient ion transfer and uptake, stimulation of biosynthesis of osmo 
protectants as well as companionable solutes,  inauguration of antioxidant enzyme and synthesis of antioxidant compounds,  
synthesis of polyamines,  production of nitric oxide (NO), and hormone inflection are numerous physiological and biochemical 
phenomena occurring in plants to withstand extremity of salinity. Several exploration advances elucidating these mechanisms 
are discussed below.

Sustaining ionic equanimity
Some studies reported that adaptive processes of plants under salinity can be elucidated from two points, (1) on the basis 
of the leaf Na+ concentration and also (2) on the ability of the plant to maintain high cellular Na+ levels (Dugasa et. al. 2018, 
García-Caparrós et. al. 2018, Shabala and Cuin, 2008). For this, Na/K ratio for both roots and shoots have to be accounted in all 
cases; although, the ratio is mainly influenced by changing the Na+ concentration, that always posses much greater proportion 
in comparison to the K+ ion concentration.
The efficiency to uptake crucial ions and their subsequent deliberation, both are fundamental events that require for 
appropriate growth and development of plants both under normal in addition to salinity (Nikalje et. al., 2018, García-Caparrós 
et. al. 2018, Niu Xiaomu et. al 1995, Serrano et. al. 1999, Hasegawa, 2013). 
The most available form of salt of soil is NaCl, therefore researches needs to be more advanced to comprehend subsequent 
uptake and convey of Na+ ion within plant body in salinity. The ultimate storage of Na+ ion normally is vacuole where it 
transported from cytoplasm via Na+/H+ antiporter. Vacuolar type H+-ATPase (V-ATPase) and the vacuolar pyro-phosphatase 
(V-PPase), are two fundamental forms of H+ pumps of vacuole (Dietz, et.al. 2001, De Lourdes et. al. 2001, and Wang et. al. 
2001). 
SOS1, SOS2 as well as SOS3 are three crucial proteins in the SOS (Salt Overly Sensitive) signaling pathway also referred as stress 
signalling pathway in the process of ionic equability and enable plants to survive under salinity. 
SOS1 plays an important role in the ion homeostasis through balanced efflux of Na+ ion at cellular level and also in the 
stimulation of long space convey of Na+ ion from root to shoot. So, higher concentration of this protein stimulate plants 
tolerance under salinity(Hasegawa et.al. 2000, Sanders et. al. 2000, Shi et. al. 2000, 2002). 

Figure 2. Regulation of ion homeostasis by the SOS pathway during salt stress.

(Source: Nikalje et. al., 2018 , Hasegawa et.al. 2000, Sanders et. al. 2000)
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Salt stress-induced Ca 2+ signals are perceived by SOS3 which 
activates the SOS2 kinase. The SOS3±SOS2 kinase complex 
regulates cellular Na + levels by stimulating Na + transport 
out of the cytoplasm (e.g. By increasing the expression and 
activity of SOS1) and conceivably by restricting Na + entry into 
the cytosol (e.g. inhibiting HKT1 activity). An additional target 
of the SOS2 kinase, NHX (vacuolar Na + /H + exchange), also 
contributes to Na + ion homeostasis by transporting Na + 
from the cytoplasm into the vacuole.  

High and low-partiality K+ transporters (HKT)
Several approaches help to keep ionic concentration in 
a balanced level in the cytoplasm (Ahmad et al., 2010a; 
Ahmad et al., 2010b; Ashraf & Foolad, 2007; Devi & Prasad, 
1998; Foyer et al., 1994). K+ ions play a key regulatory role 
in promoting Na+ exclusion in plant metabolic process 
and thus promote the process of osmotic adjustment 
(Dugasa et. al. 2018, García-Caparrós et. al. 2018, Souid et. 
al. 2018, Chakraborty et al. 2016). Associated components 
of membranes usually take part as a crucial role in order 
to maintain ion concentration in balanced form inside the 
cytosol under the stress condition for ultimate regulation of 
ion uptake and transport (Sairam et. al. 2004). The transport 
phenomenon is carried out by different carrier proteins, 
channel proteins, antiporters and symporters. Maintaining 
cellular Na+/K+ homeostasis is pivotal for plant survival in 
saline environments (R. Munns et. al. 2008, Sairam et. al. 
2004, Oh, D.H, et. al. 2010). For appropriate cytoplasmic 
enzyme activities, it is essential to keep a high concentration 
of cytosolic K+ which accounts for about 100mM regarded as 
ideal. The ranges of K+ concentration vary between 10mM 
and 200mM within the vacuole (R. Munns et. al. 2008, Sairam 
et. al. 2004, Oh, D.H, et. al. 2010). Vacuole possesse most 
important and largest plunge of K+ in the plant cell. In order 
to maintain the turgor within the cell, undoubtedly K+ has a 
crucial role (R. Munns et. al. 2008, Sairam et. al. 2004, D.-H. 
Oh, et. al. 2010) that is usually conveyed into the plant cell 
as opposed to the concentration gradient via K+ transporter 
and membrane channels. K+ transporters are mediated for 
K+ uptake mechanisms and possesse relatively high affinity 
when the concentration of K+ ions are lower outside the cells, 
on the other hand reverse or low affinity uptake is carried 
out by K+ channels when the concentration of K+ ions are 
relatively higher outside the cells,. Availability of K+ ions 
in the soil can be primarily used to determine the uptake 
mechanism whereas, very low concentration of Na+ ion 
(about 1mMor less) usually maintained in the cytosol. As Na+ 

concentrations are high during salinity stress, it combats with 
K+ ions during transportation as they are associated with the 
same  transport mechanism and therefore, usually K+ ions 
decreased (Dugasa et. al. 2018, R. Munns et. al. 2008, Sairam 
et. al. 2004).

Two classes of HKT family take part either as particular Na+ 
and K+ co-transporters or Na+ transporters  (Hauser & Horie, 
2010; Shabala et al., 2010). Improvement of Na+ uptake and 
higher Na+ levels in xylem sap (salt including conduct) was 
demonstrated by HKT21 to ameliorate that are analogous 
with prolonged salt tolerance (Mian et al., 2011a). Na+ 
avoidance from the shoot is connected with salt tolerance 
and that genes from the HKT1 subfamily, for example, 
HKT1;4 and HKT1;5, are included (James et al., 2011; Munns 
et al., 2012). Shabala et al. (2010) demonstrated that salt 
exclusion and deliberation both are pivotal for salt tolerance 
in grain. Actually, grain is an erect demonstration of a harvest 
which associates halophytic as well as glycophytic belongings, 
accordingly, both the glycophytic and holophytic components 
that might be used to adapt to salt stress (Mian et al., 2011b) 
may be an outstanding model to study.

OSMOTIC ACCLIMATIZATION

Several mechanisms assist to fight against disruptive and 
harmful effects of both primary and secondary stress with 
the augmentation of osmolytes and antioxidant production 
(Choudhury et. al., 2017, Ahmad et al., 2010a; Ahmad et al., 
2010b; Ashraf & Foolad, 2007; Devi & Prasad, 1998; Foyer 
et al., 1994; Geebelen et. al., 2002). Compatible solutes  
such as glycine betaine, proline and poles, etc. which are 
generally accumulated in the cytoplasm and essential for 
decreasing water potential occurring in the vacuole and 
ultimately to make a balance during the ion accumulation 
in that compartment (García-Caparrós et. al. 2018, Souid et. 
al. 2018, dos Reis et al., 2012). According to several studies, 
Salinity stress generally increases compatible organic solutes; 
however, whether a greater increase in compatible solutes 
correlates with increased salinity tolerance in plants remains 
to be shown. For barley, at least, it appears that the more salt-
tolerant varieties accumulate less compatible solutes than do 
the more sensitive varieties (Chen et al., 2007, Mahdavi et. al. 
2013).

•	 Salt ions compartmentalization betwixt the cytoplasm 
and vacuole provides a strict osmotic gradient 
across the vacuolar membrane. A Stabilizing process 
known as osmotic adjustment maintains this flow by 
an enhancement of the synthesis of chemical and 
biochemical molecules in the cytoplasm,. As a vital 
mechanism, Osmotic adjustment is utilized by plants as 
to fight against salt stress (Pessarakli, 2014, Zhang et al. 
2002a). In osmotic adjustment both organic solutes and 
inorganic ions have a pivotal contribution varying among 
the captivars, species as well as even among same plant 
occupying separate positions (Ashraf and Bashir 2003, 
Ashraf and Foolad 2007). Low molecular weight solutes 
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such as the organic osmolytes traditionally generated in higher plants: sugar and sugar derivatives, such as sucrose, 
polyols, and heterosides; methylated tertiary N compounds, such as glycine betaine and homarine; amino acids such as 
proline and glutamate and other low molecular weight metabolites (Jakobsen et al. 2007). Organic osmolytes posses a 
versatile role in performing osmotic as well as saving sub cellular structure which regards as a central dogma in stress 
physiology (Hare et al. 1998). Uptake of inorganic ions and osmotic solutes plays as a substitute source compared to the 
synthesizing organic solutes in plants (Gagneul et al. 2007). Osmotic stress is also experienced in other photosynthetic 
organisms, considerably in algae mediates similar responses and tolerance mechanisms as higher plants (Chapin 1991). 
Such as similar compatible solutes (e.g., proline, glycerol, and betaine) are found to be assembled by a unicellular green 
alga Dunaliella salina (Chlorophyta) and higher plants under salt stressed condition (Zhang et al. 2002b). Proline, glycine-
betaine, proline betaine, B-alaninebetaine, D-sorbitol, D-mannitol, sucrose, glucose, fructose, D-pinitol, L-quebrachitol, 
Myo-inositol, b-dimethylsulphone and propionate are compatible solutes utilized by plants in osmotic adjustment 
mechanisms (Lauchli & Epstein, 1990). 

•	 The antioxidant defense system comprises endogenous enzymatic and exogenous non enzymatic nutrients (Lira et. al. 
2018, Choudhury et. al., 2017, Souid et. al. 2018, Zhu et al. 2003). The dietary antioxidant nutrients can either be water 
soluble or lipid soluble. There are also other dietary constituents that may have either direct antioxidant activity or indirect 
antioxidant activity such as trace elements that are constituents of antioxidant enzymes (Dugasa et. al. 2018, Alissa et. al. 
2012).

Figure 3. The antioxidant defense system (Source: Alissa et. al. 2012, Lira et. al. 2018).

Due to expecting compatibility with cytoplasmic entities and processes, normally ‘compatible solutes’ is occasionally used to 
narrate these organic osmolytes (Munns & Tester, 2008). As an instance, in tobacco proline synthesis plants expand up to 80 
times under saline environments. 
•	 Proline is considered as a key amino acid that assists plants to resist osmotic stress (Lira et. al. 2018, Souid et. al. 2018, 

Rajaravindran et. al. 2012). Generally proline level increases with the consecutive increasing of L-glutamic acid concentration 
in plants under stresses, hence it is considered as one of the possible precursors for proline biosynthesis(Souid et. al. 2018, 
Ashraf and Foolad 2007; Kishor et al. 2005, Willekens et al. 1997, Ray et. al., 2016, Rajaravindran et. al. 2012).Various studies 
reported that the accumulation of proline in a wide variety of species under various kinds of stresses and its possible 
involvement in adaptive mechanisms (Ray et. al., 2016, Lee et al. 2013, Azad et al. 2012, Marvi et al. 2011, Zhang et al. 2014, 
da Costa et. al. 2011, Arshi et al. 2012, Turan et al. 2012) . Proline scavenges free radicals to mediate osmotic adjustment 
as well as stabilizes sub cellular structures (Hare and Cress 1997). For example In durum wheat (Triticum aestivum L.), a 
positive interaction was observed between proline level and osmotic potential, and thus it was suggested that proline is 
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a crucial metabolite in osmotic adjustment under salinity 
stress (Poustini et al. 2007). Normally proline accumulates 
in the cytosol in plants as well as it serves as major factor 
to the cytoplasmic osmotic adjustment in corresponds to 
drought or salinity stress (Ashraf and Foolad 2007).

•	 Glycerol usually emulsed from glucose, serves as principle 
osmolytes in some plants as well as its rate of synthesis 
increases upon salinity falls up after which it converts to 
starch when salinity falls down (Chen and Jiang 2009). 
However, Glycerol can be an efficient osmolytes under 
high salinities as it is difficult to match the extreme 
solubility of glycerol with  many other solutes which are 
compatible and it is chemically inert, so that also non-
toxic (Ahmad et. al. 2018). Next, it is an end-product 
metabolite, and hence its occurrence is unlikely to offset 
of most of the metabolic processes. Fourth, the energetic 
cost of glycerol synthesis from glucose is comparatively 
low and availability of nitrogen doesn’t a matter for it 
(Chen and Jiang 2009).

•	 Several sugars such as sucrose, trehalose, glucose and 
fructose, etc. are the major osmolytes in many plants 
which are associated with osmotic adjustment. Generally 
NaCl treatment causes an increase in total sugar 
content in plant cells, hence the sugar content regarded 
as a very sentient factor regarding the salt tolerance 
improvement (Liu and van Staden 2001). Digression of 
sugars associated with NaCl-tolerance, such as NaCl and 
Cl– translocation and (or) compartmentalization, solute 
synthesis for interdependent mechanisms of growth 
and osmotic adjustment, and protein turn-over Sugars, 
all  play a bit part  in the adaptative processes (Liu and 
van Staden 2001). Sugars are most commonly found to 
accumulate under osmotic stress in most of the plants. 
For instance the total soluble sugar level in a salt-tolerant 
rice variety was more than in the salt-sensitive variety, 
and thus sugars contribute to the resistance mechanisms 
to salt-induced osmotic stress in rice plants (Cha-um et 
al. 2009). Another study revealed that, in root nodules 
of legumes (Medicago truncatula and Phaseolus vulgaris), 
the synthesis and accumulation of trehalose was greatly 
increased as a compatible solute which causes resistancy 
to salt stress (Lo´pez et al. 2008). Sorbitol is the principle 
low molecular weight carbohydrate and found to be 
increased with the extremity of salinity and possesse 
essential role in the osmotic adjustment as an osmolytes 
or compatible solute (Eggert et al. 2007a). Another study 
claimed as mannitol is the main low molecular weight 
carbohydrate which also observed to be increased upon 
salinity in red alga Dixoniella grisea (Rhodellophyceae) 
and claimed to be posses major osmotic functions in the 
red alga that is unicellular (Eggert et al. 2007b).

•	 The concatenation of glycine betaine in promoting 

salinity tolerance has been enumerated in barley and 
maize (Volkmar et al., 1998) and also verified by several 
studies from genetic field. Betaines are generally 
carry a fixed positive charge upon the fully methylated 
nitrogen atom and are ammonium compounds (Zhang 
et al. 2002a) which  is generally synthesized by many 
plant families when exposed to saline or drought stress 
(Munns 2002; Ashraf and Harris 2004; Su et al. 2006). The 
primary functions of betains is to keep the intracellular 
and extracellular ions in balanced form through 
counterbalancing the osmotic potential in order to scale 
down the toxic effects of salinity as well as also stabilizes 
the protein structures and play major functions in the 
protection of the major enzymes, membrane structures, 
photosynthetic apparatus, cytoplasm, chloroplasts from 
the toxicity of Na+ and thus regards as a compatible 
solute also (Raza et al. 2007). Glycine betaine has been 
also observed in sugar beet (Beta vulgaris L.) to be played 
a major osmolytic functions (Chołuj et al. 2008) during 
osmotic stress. Ashraf and Harris (2004) postulated that 
the most significant determinative of salt tolerance are 
sustaining as well as accumulating of both K+ and Ca2+, 
thus  K+/Na+ and Ca2+/Na+ ratios can be an efficient 
and confirmative criteria for selecting salt tolerant crop 
species (Raza et al. 2007). 

•	 Similarly Mannitol an important osmoprotectant in 
celery (Tarcynski et al., 1993). Notable extent of carbon 
is consumed by plants to produce sufficient osmotic 
substances and this process potentially restricts normal 
growth and development of the plant (Munns & Tester, 
2008). Greater concentrations of inorganic ions also used 
for osmotic adjustment (Greenway & Munns, 1980). 

•	 Synthesis of organic components in the cell expense 
more energy than this inorganic approach (Munns & 
Tester, 2008; Yeo, 1983). Generally, seven moles of ATP 
are needed  in leaf cells, to aggregate one mole of NaCl 
as an osmoticum,. In contrary, the moles of ATP needed 
to synthesize one mole of an organic compatible solute 
are much more. The ATP requirement for the synthesis 
or accumulation of solutes has been estimated as 3.5 
for Na+, 34 for mannitol, 41 for proline, 50 for glycine‐ 
betaine, and approximately 52 for sucrose (Munns & 
Tester, 2008). Actually, accumulation of osmoticum, 
an powerful survival process for plants by adaptation 
under saline conditions although growth of the plant is 
greatly affected by it due to ion toxicity and deficiency 
this mechanism affected (Munns & Tester, 2008; Volkmar 
et al., 1998).

•	 Extreme salinity has been observed to stimulate ROS 
production and accumulation in plant cells (Chawla 
et al. 2013). Oxidative stress defenses occur through 
enzymatic antioxidant mechanism including catalase 
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(CAT), superoxide dismutase (SOD), peroxidase (POX) 
and enzymes of the ascorbate-glutathione cycle as 
ascorbate peroxydase (APX), monodehydroascorbate 
dehydrogenase (MDHAR), dehydroascorbate reductase 
(DHAR) (Dugasa et. al. 2018, Luis et. al. 2018, Foyer and 
Noctor 2011; Chawla et al. 2013) and non-enzymatic 
antioxidants as phenolics, flavonoids (Munne´-Bosch 
2005; Gupta and Huang 2014; Rakhmankulova et al. 
2015; Talbi et al. 2015). 

•	 CAT generally found to be accelerated under salinity 
stress and associated  to the salinity tolerance 
mechanisms which eliminates  toxic levels of H2O2 and 
renders defense opposed to oxidative stress (Dugasa et. 
al. 2018, Sudhakar et al. 2001; Bor et al. 2003; Mittova et 
al. 2003; Mittova et al. 2004; Mittova et al. 2015; Gao et al. 
2008 ; Chawla et al. 2013). CAT is involved in scavenging of 
H2O2 during salt stress and other abiotic stress conditions 
(Willekens et al. 1997, Ray et. al., 2016, Rajaravindran et. 
al. 2012, Ediga et. al. 2013, Kong-ngern et al. 2012, Khan 
et al. 2002, Ahmad et al. 2012, Van Breusegem et al. 2001; 
Shigeoka et al. 2002, Arshi et al. 2012) and is considered 
as a major enzyme detoxifying H2O2 in tomato fruits 
(Murshed et al. 2014). 

•	 Although APX performs the same general function 
as catalase, it catalyzes the removal of H2O2 by using 
ascorbate as a reductant (Sudhakar et al. 2001; Bor et 
al. 2003; Mittova et al. 2003; Mittova et al. 2004; Mittova 
et al. 2015; Gao et al. 2008 ; Chawla et al. 2013) . APX 
is a family of isozymes widely involved in regulation of 
intracellular level of H2O2 in higher plants (Ray et. al., 
2016, Rajaravindran et. al. 2012, Ediga et. al.2013, Kong-
ngern et al. 2012, Khan et al. 2002, Van Breusegem et al. 
2001; Shigeoka et al. 2002, Arshi et al. 2012). 

•	 Several investigations proposed that H2O2 content as well 
as peroxidase enzymes that generally accumulate in the 
leaves can be valid criteria to measure the adaptability 
of crop plants towards salinity stress (Ediga et. al. 2013, 
Sajjad et. al. 2012, Weisany et al. 2012, Ozdemir et al. 
2012, Shaheen et al. 2012). 

•	 GPOX enzymes protect cells against oxidative damage 
generated by ROS. They catalyze the reduction of H2O2 or 

organic hydro peroxides to H2O or alcohols. The second 
category comprises a series of regulatory proteins 
(transcription factors, protein kinases) involved in the 
regulation of the signalling cascade that controls the 
expression of additional genes whose products could 
belong, in turn, to either of the two groups (García-
Caparrós et. al. 2018, Agarwal et al. 2006; Shinozaki and 
Yamaguchi-Shinozaki 2007)

•	 Sufficient water uptake requires maintaining an osmotic 
gradient and thus halophytic plants acquire inorganic 
ions to a concentration equal to or greater than that of 
the surrounding solution (Merchant and Adams 2005). In 
many plants, inorganic ions possess the crucial function 
in osmotic adjustment than that of compatible solutes 
and accumulation of organic osmolytes expenses more 
metabolic energy than sufficient uptake of ions from soil 
(Patakas et al. 2002). 

•	 Mutant form of rsr1-1 found to be oversensitive to 
proline in Arabidopsis which can be suppressed by 
stockpiling of sugar like glucose or sucrose in the 
medium (Hellmann et al. 2000). So, there may be a 
straight correlation between proline metabolism as well 
as sugar-sensing mechanisms. Glycine betaine (5 to 50 
mmol/L) found to be an important organic osmolytes 
to avert proline accumulation in oil seed of rape (Larher 
et al. 1996). The opposed effect of glycine betaine and 
the pragmatic consequence relied on glycine betaine 
uptake and accretion via a feasible osmotic upshot 
since its endogenous rank was slam to that of proline 
accumulated in discs incubated in stress media devoid of 
glycine betaine (Vílchez et. al., 2018). The worth of glycine 
betaine in reversing the consequence of osmotic distress 
on the proline reaction has been long-established in leaf 
discs encumbered with glycine betaine preceding to their 
incubation in wilting condition. Glycine betaine might 
have as well amplified the vacuolar assembly in the roots 
of salt stressed plants for stockpiling additional Na+ in 
root cells, which was imperative in the uptake of water 
for plant confrontation to high salt condition ((Vílchez et. 
al., 2018, Ashraf and Foolad 2007).
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Table 1. Most abundant antioxidants that play essential roles in osmotic regulation under salinity stress.
Antioxidants Properties Functions under salinity stress references 

Glutathione
(GSH)

Non-enzymatic low molecular 
weight antioxidant and 
hydrophilic

Chemically react with free radicals (O2.
-, 

OH.,H2O2 )and scavenges them
Martinez et al. 2018 (Tomato), Hasanuzzaman et al. 2018 (Brassica), 
Gupta et al. 2018 (highe plants), Broadbent et al. 1995 (Tobacco), 
Ruiz-Lozano et al. 2018(Rice), Anderson et al. 2004(spurge), Sofo et 
al. 2015, Nahar et al. 2015 (Mungbean), Das et al. 2014

Ascorbate
(AsA)

Non-enzymatic low molecular
weight antioxidant and 
hydrophilic

Chemically react with free radicals (O2.
-

,H2O2 )and scavenges them
Golkar et al. 2018 (safflower), Liang et al. 2018 (Kiwifruit), Sofo et 
al. 2015, Nahar et al. 2015 (Mungbean), Taïbi et al. 2016( Common 
bean), Jiang et al. 2017(Maize), Alves et al. 2017(Chick pea), 
Choudhury et al. 2017, Gill et al. 2010, Gupta et al. 2018 (highe 
plants)

Polyphenols Diverse secondary metabolites 
and non-enzymatic low 
molecular weight antioxidant 
and hydrophilic

Directly scavenge molecular species of 
active O2

Golkar et al. 2018 (safflower), Golkar et al. 2018 (safflower), Gul et al. 
2018 (Maize), Ashraf et al. 2018 (Maize), Liang et al. 2018 (Kiwifruit), 
Gupta et al. 2018 (highe plants), Nikalje et al. 2018 (Halophyte), Das 
et al. 2014

Flavonoids Non-enzymatic low molecular 
weight antioxidant and 
hydrophilic

Scavenger of H2O2 Ashraf et al. 2018 (Maize), Taïbi et al. 2016( Common bean), Gill et al. 
2010, Gul et al. 2018 (Maize), Liang et al. 2018 (Kiwifruit), Gupta et al. 
Nikalje et al. 2018 (Halophyte)2018 (highe plants), Baskar et al. 2018 
(highe plants), Das et al. 2014

Sugar alcohol
(eg. Mannitol)

low molecular weight non-
enzymatic antioxidant and 
hydrophilic

Functions as osmoprotectants Gill et al. 2010, Golkar et al. 2018 (safflower), Gupta et al. 2018 
(highe plants), Nikalje et al. 2018 (Halophyte), Das et al. 2014

Tocopherols 
(vitamin E)

low molecular weight non-
enzymatic antioxidant and 
hydrophobic

Chemically react with free radicals (O2.
-, 

1O2,OH.,H2O2 )and also scavenges them
Gupta et al. 2018 (highe plants), Kim et al. 2018,   Das et al. 2014

Carotenoids Hydrophobic and non-
enzymatic low molecular 
weight antioxidant

Detoxification  of various ROS Gul et al. 2018 (Maize), Gupta et al. 2018 (highe plants), Nikalje et al. 
2018 (Halophyte), Das et al. 2014

Proline Proline (symbol Pro or P) is 
a proteinogenic amino acid, 
organic osmolytes

Acts as an osmoprotectants as able to 
scavenge ROs

Golkar et al. 2018 (safflower), Vílchez et al. 2018(Pepper), Maghsoudi 
et al. 2018(Wheat), Gill et al. 2010 ,Hellmann et al. 2000 (Arabidopsis), 
Wang et al. 2009(alfalfa), Qureshi et al. 2015(Eucalyptus)

Glycine betain Organic osmolytes Acts as an osmoprotectants Vílchez et al. 2018(Pepper), Qureshi et al. 2015(Eucalyptus), Joseph
et al. 2017, Volkmar et al. 1998 (Barley and Maize), Chołuj et al. 2008
(Sugar beet)

Superoxide 
dismutase
(SOD)

Metalloenzyme and low 
molecular weight antioxidant

Catalyzes the dismutation of O2.-  to O2 
and H2O2

Liang et al. 2018 (Kiwifruit), Ashraf et al. 2018 (Maize), Golkar et al. 
2018 (safflower), Jiang et al. 2017(Maize), Alves et al. 2017(Chick 
pea), Choudhury et al. 2017, Gill et al. 2010

Catalase (CAT) low molecular weight 
enzymatic antioxidant

Catalyzes the dismutation of two 
molecules of H2O2 into H2O and O2

Ashraf et al. 2018 (Maize), Liang et al. 2018 (Kiwifruit), Golkar et al. 
2018 (safflower), Sofo et al. 2015, Nahar et al. 2015(Mungbean), 
Taïbi et al. 2016( Common bean), Zhao et al. 2017(Arabidopsis), 
Jiang et al. 2017(Maize), Alves et al. 2017(Chick pea), Choudhury et 
al. 2017, Wang et al. 2009(alfalfa), Gill et al. 2010, 

Peroxidasa
(POD)

Heme containing protein and 
enzymatic antioxidant

Oxidizes aromatic electron donor 
such as guaicol and pyragallol at the 
expense of H2O2

Sofo et al. 2015, Liang et al. 2018 (Kiwifruit), Nahar et al.
2015 (Mungbean), Taïbi et al. 2016( Common bean), Jiang et al. 
Golkar et al. 2018 (safflower), 2017(Maize), Alves et al. 2017(Chick 
pea), Ashraf et. al. 2018 (Maize), Choudhury et al. 2017, Wang et al. 
2009(alfalfa), Gill et al. 2010, Gul et al. 2018 (Maize)

Ascorbate
peroxidase
(APX)

low molecular weight
enzymatic antioxidant

Reduces H2O2 to H2O by using two 
molecules of AsA and generates
monodehydroascorbate (MDHA)

Liang et al. 2018 (Kiwifruit), Ashraf et al. 2018 (Maize), Sofo et al.
 2015, Nahar et al. 2015(Mungbean), Taïbi et al. 2016( Common 
bean), Jiang et al. and Golkar et al. 2018 (safflower), 2017(Maize), 
Alves et al. 2017(Chick pea), Choudhury et al. 2017, Wang et al. 
2009(alfalfa), Gill et al. 2010

Glutathione 
peroxidase 
(GPX)

enzymatic antioxidant Reduces H2O2 to H2O and also organic 
peroxides

Anderson et al. 2004(spurge), Bela et al. 2015(Arabidopsis), Diao et 
al. 2014(Rice), Gao et al. 2014(Arabidopsis), Sofo et al. 2015, Nahar 
et al. 2015(Mungbean), Taïbi et al. 2016( Common bean), Wang et al. 
2009(alfalfa), Gill et al. 2010

Glutathione 
reductase 
(GR)

NADP(H) dependent 
enzymatic antioxidant

Reduces GSSG to GSH Anderson et al. 2004(spurge), Sofo et al. 2015, Nahar et al.
2015(Mungbean), Taïbi et al. 2016( Common bean),
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CONCLUSION

Environmental stresses menace plant development, growth 
also yield and these intimidations are key apprehensions of the 
human internationally. By means of expansion in population, 
additional food production is obligatory to congregate global 
supplies excluding abiotic and biotic stresses lock up its yield. 
But, amongst all stresses, salinity is the chief distressing since 
it is prevalent in both arable as well as non-arable lands. 
The consequences of extreme salts have been pragmatic to 
have a catastrophic consequence ahead approximately all 
plants. Therefore, it is decisive to comprehend the cellular 
mechanisms that take place in plants in saline environment in 
the trust of ruling an integrated explanation to contest such 
tribulations. Biotechnology holds pledge for both aspects: 
(1) through the most recent tools and techniques, 
comprehensive studies can be approved away to comprehend 
the processes inside the cell in different circumstances; in 
addition to (2) the included prospective of biotechnology 
can be engaged to contest such harms through changing the 
hereditary stuffing or by appearance patterns or by optimizing 
the biochemical with molecular pathways in lots of ways.
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