Grape Seed Extract and Zinc Containing Multivitamin-mineral Nutritional Food Supplement Protects Heart against Myocardial Ischemia-reperfusion Injury in Wistar Rats

Pirasanthan R3

Department of Pharmacology, Nepalgunj Medical College, Nepal

Corresponding Author:
Pirasanthan R3, Department of Pharmacology, Nepalgunj Medical College, Nepal

Received Date: July 05, 2023
Accepted Date: July 07, 2023
Published Date: Aug 07, 2023

Abstract

Throughout a long period of time, zincovit pills have been used as nutritional dietary supplements. In prior research, we had discussed the powerful in vitro and in vivo antioxidant, anti-hyperglycemic, and anti-cataractogenic potential of a combined formulation of grape seed extract and Zincovit tablets. So, utilising a Langendorff model of ischemia-reperfusion in Wistar rats, the purpose of the present study was to examine the cardio-protective efficacy of a single mixed formulation of grape seed extract and Zincovit tablets. Increased coronary flow rate, decreased creatine kinase activity in coronary effluent, decreased MDA, decreased 4-HNE, and increased protein thiol content in heart tissue homogenate are all indications that the combined formulation of grape seed extract and Zincovit tablets significantly attenuated ischemia-reperfusion-induced cardiac injury. The results of this study showed that the combination of grape seed extract and Zincovit tablet are two promising functional nutritional food supplements that may provide a fresh therapeutic option.

Introduction

Ischemic heart disease caused 7 million deaths worldwide in 2011, according to the WHO. The greatest cause of death worldwide is acute myocardial infarction (AMI) [1]. It is important to take into account both the mortality impact and the quality of life degradation for individuals who survive this vascular catastrophe. Myocardial perfusion has been restored following acute myocardial ischemia using quick-acting pharmacological or mechanical interventions, such as thrombolytic therapy, angioplasty, or coronary bypass surgery, as it allows to reestablish blood flow in the cardiac zones affected by the occlusion of a branch of the coronary artery. However, this method results in the ischemic zone being reperfused, creating a fatal reperfusion, as these reactive species target macromolecules including lipids, DNA, and proteins and set off cell death pathways [3]. This ischemia-reperfusion process also leads to a rise in the formation of reactive oxygen species (oxidative stress) [2]. Lethal reperfusion is thought to account for up to 50% of the eventual extent of a myocardial infarct, a portion of the damage that is likely to be prevented, according to one study on animal models of acute myocardial ischemia [4]. One of the main causes of ischemia-reperfusion injury is thought to be oxidative stress [5]. Lethal reperfusion injury has been the target of numerous techniques, but the positive outcomes in clinical settings have so far fallen short of expectations. Treatment methods are intended to Reduce the amount of damage caused by free radicals by either scavenging already existing free radicals or interfering with the process by which they are created [6]. A cutting-edge combination of vitamins, minerals, and grape seed extract is found in Zincovit tablets (Table 1). Increased antioxidant potential and defence against tissue lipid peroxidation and protein oxidation are provided by long-term daily treatment of grape seed extract [7]. Proanthocyanidins, which include polymers of flavan-3-ol like catechin and epicatechin and have a potent antioxidative activity in aqueous systems, are the physiologically active components of grape seed extracts [8]. Zincovit pills and grape seed extract have been used in research before for their potent antioxidant, anti-hyperglycemic, and anti-cataractogenic effects. So, utilising a Langendorff model of ischemia-reperfusion in Wistar...
The cause of this may be that using too many antioxidants causes lipid peroxidation and the subsequent production of reactive aldehydes like MDA and 4-HNE, among other things. In the past, we have written about the powerful in vitro and in vivo antioxidant, anti-hyperglycemic, and anti-cataractogenic potential of a combined formulation of grape seed extract and Zincovit tablets [9–13]. According to one study, the myocardium of rats given proanthocyanidins was more resistant to damage from ischemia and reperfusion than the myocardial of control rats who were not given any treatment. Proanthocyanidins, according to their theories, might not bind to the myocardium but rather be active for days or weeks and operate as a sink for hydroxyl radicals [6]. The grape seed extract's proanthocyanidins may interact with intracellular calcium ions to lower the amount of ionised calcium. According to one study, flavonoids may raise a substrate's propensity for binding, may boost the efficiency of the electron transfer between the P-450 enzyme and NADPH-ferrihemoprotein reductase [27], further protecting against reperfusion-induced calcium overload. Proanthocyanidins may also serve as a regenerator of other antioxidants, maintaining their concentrations at levels that can prevent the generation of hydroxyl radicals. According to one study, supplementing with vitamin E inhibits the infarcted rat heart's malondialdehyde concentration from rising, conjugated diene production, and depression of left ventricular function [20]. Given the different environments in which each vitamin operates (vitamin C acts in the hydrophilic milieu, scavenging reactive oxygen species, while zinc is located in the interphase of the bilayer and prevents iron ore from oxidising), it is possible that vitamins C and E and zinc will have a synergistic effect. The lipid oxidation free-radical chain reaction is inhibited by copper binding to the membrane and alpha-tocopherol in the hydrophobic regions of the bilayer [28]. Malondialdehyde (MDA) production in endothelial cells and low Magnesium Oxide Induced Lipid Peroxidation are both inhibited by magnesium [28]. The synergistic interaction of Zincovit tablet ingredients, such as grape seed extract proanthocyanidins, which contain only procyanidins [subunits constituted of (+) catechin (C) and (-)-epicatechin (EC)], Vitamins A, B, C, D, and E, folic acid, biotin, and minerals like zinc, copper, may interact with intracellular calcium ions to lower the amount of ionised calcium. According to one study, flavonoids may raise a substrate's propensity for binding, may boost the efficiency of the electron transfer between the P-450 enzyme and NADPH-ferrihemoprotein reductase [27], further protecting against reperfusion-induced calcium overload. Proanthocyanidins may also serve as a regenerator of other antioxidants, maintaining their concentrations at levels that can prevent the generation of hydroxyl radicals. According to one study, supplementing with vitamin E inhibits the infarcted rat heart's malondialdehyde concentration from rising, conjugated diene production, and depression of left ventricular function [20]. Given the different environments in which each vitamin operates (vitamin C acts in the hydrophilic milieu, scavenging reactive oxygen species, while zinc is located in the interphase of the bilayer and prevents iron ore from oxidising), it is possible that vitamins C and E and zinc will have a synergistic effect. The lipid oxidation free-radical chain reaction is inhibited by copper binding to the membrane and alpha-tocopherol in the hydrophobic regions of the bilayer [28]. Malondialdehyde (MDA) production in endothelial cells and low Magnesium Oxide Induced Lipid Peroxidation are both inhibited by magnesium [28]. The synergistic interaction of Zincovit tablet ingredients, such as grape seed extract proanthocyanidins, which contain only procyanidins [subunits constituted of (+) catechin (C) and (-)-epicatechin (EC)], Vitamins A, B, C, D, and E, folic acid, biotin, and minerals like zinc, copper, may be responsible for the combined decreased MDA, 4-HNE, Creatine kinase ().

Conclusions

The current study thus reveals that a single combination formulation of grape seed extract and Zincovit tablet is a viable functional nutritional food supplement that may present...
Wistar rats with a novel therapeutic opportunity to prevent cardiac ischemia-reperfusion injury. It is not always possible to fully translate the therapeutic benefit observed in animal research to people. So, a clinical study should be carried out to clearly identify Zincovit tablets with grape seed extract’s cardio-protective function in people. Our findings open the door to clinical investigations that could enhance the clinical outcomes of patients who have had percutaneous angioplasty, a fresh perspective that is likely to inspire the execution of clinical trials designed to show the viability of this paradigm as a dietary supplement. Eventually, this knowledge would support our findings, opening the best strategy to keep ischemic heart disease from spreading among people.

REFERENCES

17. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of


