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/Abstract h

Artificial Intelligence (Al) has become an integral component of modern ophthalmology, with oculoplastic surgery representing a rapidly
evolving subspecialty that stands to benefit from advances in automation and deep learning. Despite promising innovations, a comprehensive
understanding of Al's role in oculoplastic diagnosis and management remains limited. This systematic review, conducted according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, aims to evaluate the current landscape, clinical
performance, and translational potential of Al applications in oculoplastic diseases published between 2000 and 2025. A structured search of
PubMed, Scopus, and Embase identified 25 peer-reviewed studies involving Al-driven image analysis, disease classification, surgical planning,
and prognostic modelling across eyelid, lacrimal, orbital, and periocular disorders. Studies were assessed for model performance, clinical utility,
and methodological rigor. The including studies demonstrated that Al algorithms achieved diagnostic accuracies exceeding 90% in detecting
periocular malignancies, outperforming or complementing traditional clinician-based assessment. Machine learning models also facilitated
surgical planning and postoperative outcome prediction, contributing to enhance clinical workflow efficiency and reduced inter-observer variability.
Nevertheless, limitations related to dataset heterogeneity, small sample sizes, and limited external validation constrain generalizability. Al holds
significant promise in advancing precision and efficiency in oculoplastic care. Future research should prioritize multicentric validation, explainable
Al frameworks, and integration with robotic-assisted surgery to enable safe and ethical clinical translation, ultimately bridging the gap between
technological innovation and patient-centered ophthalmic practice.

Keywords: Artificial Intelligence; Machine Learning; Deep Learning; Oculoplastic Surgery; Computer-Assisted Diagnosis; Periocular
Neoplasms; Robotic Surgical Procedures; Explainable Atrtificial Intelligence.
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Figure 1. Artificial Intelligence in Oculoplastic Surgery: Current Landscape and Future Directions.
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Al enhances precision and efficiency in oculoplastic surgery while
requiring multicentric validation and ethical transparency.
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INTRODUCTION

Artificial Intelligence (Al), defined as the simulation of
human cognitive processes by computer systems, has
rapidly emerged as a transformative technology in modern
medicine. Within ophthalmology, Al has made remarkable
contributions to retinal, corneal, and glaucoma diagnostics,
and is now extending its impact into oculoplastic and
reconstructive surgery a field that demands precision in
both functional and aesthetic restoration of the periocular
region [1-3]. Oculoplastic diseases, encompassing eyelid
tumors, ptosis, thyroid eye disease (TED), lacrimal disorders,
and orbital pathologies, present diagnostic challenges due
to overlapping anatomical and pathological characteristics
[4]. The introduction of Al-driven deep learning systems,
particularly Convolutional Neural Networks (CNNs), has
enabled automatic image classification, quantification of
eyelid morphology, and periocular tumour detection with
accuracies often surpassing expert clinicians [5,6]. Early
implementations of Al in oculoplastics began with the
detection of blepharoptosis (ptosis) using deep learning
frameworks trained on facial and eyelid images. Hung et
al. (2021) demonstrated that CNN-based systems achieved
diagnostic accuracies exceeding 90%, outperforming general
ophthalmologists in ptosis identification [7]. Similarly, Li et
al. (2022) utilized Al to distinguish between malignant and
benign eyelid tumors using photographic datasets, achieving
an area under the curve (AUC) of 0.95 [8].

Recent advances in facial recognition Al and periorbital
morphometrics expanded applications beyond
diagnostics. Al now aids in preoperative planning for
blepharoplasty, eyelid
decompression surgeries, allowing for prediction of aesthetic
and functional outcomes [9,10]. Emerging models, such as
the OrbitMap system and adaptive CNNs, can automatically
measure palpebral fissure height and levator function from
digital images [11,12]. The integration of multimodal imaging,
combining MRI, photography, and ultrasound with machine
learning has shown promise in complex orbital and lacrimal
pathologies, enabling 3D reconstructionand improved surgical
navigation [13]. Al-based prediction algorithms have also been
applied to postoperative satisfaction and complication rates

have

reconstruction, and orbital

in eyelid and brow surgeries [14]. However, despite these
advancements, challenges remain regarding dataset diversity,
algorithmic bias, data privacy, and regulatory approval. Many
Al systems are limited by small, institution-specific datasets
and lack external validation, restricting generalizability to
broader populations [15,16]. Furthermore, explainable Al
(XAl) frameworks are needed to ensure clinical transparency
and acceptance among oculoplastic surgeons [17].

This review systematically synthesizes published evidence
from 2000 to 2025, highlighting the evolution, validation,
and translational potential of Al applications in oculoplastic
diagnosis and management, following PRISMA guidelines.

METHODS

This systematic review adhered strictly to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020
transparency,

framework, ensuring methodological
reproducibility, comprehensiveness
[18,19]. The study protocol was designed to evaluate

and

the diagnostic and management applications of Artificial
Intelligence (Al) in oculoplastic diseases, including periocular
tumors, ptosis, orbital disorders, lacrimal system pathologies,
and reconstructive surgery outcomes.

Literature Search Strategy

A comprehensive electronic literature search was performed
using PubMed, Scopus, Web of Science, and Google Scholar
databases for studies published between January 2000
and October 2025. The search combined Medical Subject
Headings (MeSH) and free-text terms:

" ou

“artificial intelligence,” “machine learning,” “deep learning,”
“oculoplastic surgery,” “ ptosis,
disease,” “blepharoplasty,” and “periocular pathology.”

Boolean operators were applied as follows:

noou noou

eyelid tumors, orbital

(“Artificial Intelligence” OR “Deep Learning” OR “Machine
Learning”) AND (“Oculoplastic” OR “Eyelid” OR “Orbital” OR
“Lacrimal” OR “Blepharoplasty”).

Manual cross-referencing of included studies and grey
literature searches were also performed to identify additional
relevant works [20-22]. PRISMA flow diagrams (as per Page et
al. 2021) were used to represent the selection process.
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Figure 2. Al - Artificial Intelligence; PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses. This
flowchart follows PRISMA 2020 guidelines (Page et al., BM) 2021;372:n71). From 426 identified records, 398 remained after
duplicate removal. After title, abstract, and full-text screening, 25 studies were included in the qualitative synthesis and 12 in

the quantitative meta-analysis.

Figure 2: PRISMA Flow diagram - Al in Oculoplastic Diseases (2000-2025)

Scopus, Web of Science, Google Scholar)

[ Records identified from databases (PubMed,

(n = 426) ]

: 2

[ Records after duplicates removed

(n =398) ]

Records screened by tile/abstract
(n = 398)

Full-text articles assesed for eligi

Full-text articles excluded with reasons:

e Non-peer-reviewed (n = 18)

* Insufficient data (n = 15)

* No diagnostic metric (n = 20)
Total excluded = 53

Inclusion and Exclusion Criteria

Studies were included if they met the following criteria:

+  Peer-reviewed, English-language publications between
2000 and 2025.

+ Focused on Al-based diagnostic,

applications

periocular conditions.

+ Reported quantitative performance metrics, such as

predictive, or

management within  oculoplastic or

accuracy, sensitivity, specificity, or area under the receiver
operating characteristic curve (AUC).

Exclusion criteria included:

* Non-peer-reviewed material (conference abstracts,
theses).

* Studies unrelated to oculoplastic applications (e.g.,
retinal-only Al models).

»  Editorials, commentaries, and narrative reviews without

empirical data.

Study Selection and Screening

Two independent reviewers screened all records using Rayyan
QCRI software (Qatar Computing Research Institute) [23].
Duplicates were removed, and disagreements were resolved
through consensus or arbitration by a senior reviewer. Titles
and abstracts were screened first, followed by full-text review
for eligibility. The inter-reviewer agreement was calculated
using Cohen'’s kappa (k) statistic, with a k > 0.85 indicating
strong concordance [24].

Studies/included |r| qualitative synthesis
(1745))

Studies included in quantitative synthesis
(meta-analysis)
(n=12)

Data Extraction

Data extraction followed a standardized protocol adapted

from Islam et al. (2020) [25]. Extracted data included:

« Author(s), year, and country of origin

+  Study design and dataset characteristics

« Al algorithm type (CNN, SVM, ensemble models, etc.)

«  Diagnostic or predictive task

+  Performance outcomes (accuracy, sensitivity, specificity,
AUQ)

«  Validation type (internal, external, or multicentric)

Where multiple datasets were used, priority was given to

those with validated ground truth annotations or clinician-

verified labels.

Quality Assessment

The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool was applied to evaluate bias and applicability
concerns across four domains: patient selection, index test,
reference standard, and flow/timing [26]. For meta-analysis
components, statistical heterogeneity was evaluated using
Cochran’s Q-test and [? statistic, with 12 > 75% indicating
substantial heterogeneity [27]. Risk of bias in Al-specific studies
was further analyzed using the PROBAST-Al framework,
which assesses methodological rigor in machine learning-
based diagnostic models [28]. Publication bias was assessed
through funnel plot symmetry and Egger's regression test
when 210 studies were included [29].
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Data Synthesis

Due to heterogeneity in Al architectures, imaging modalities,
and performance reporting, a narrative synthesis was
performed. When comparable outcome measures were
available (e.g., AUC or diagnostic accuracy), random-effects
meta-analyses were conducted using Review Manager
(RevMan) 5.4 software [30]. Studies were grouped into
subcategories based on the anatomical focus (eyelid, orbital,
lacrimal) and Al model type (supervised vs. unsupervised
learning) [31].

RESULTS

Out of 426 identified articles, a total of 25 studies metinclusion
criteria, of which 12 were eligible for quantitative synthesis.
Deep learning algorithms,
neural networks (CNNs), were the most frequently used.

particularly  convolutional
Al demonstrated high diagnostic performance in eyelid
malignancy detection (AUC > 0.92), periocular image analysis,
and automated ptosis measurement. The studies spanned
multiple continents (Asia, Europe, and North America) several
studies applied Al for outcome prediction in blepharoplasty
and reconstructive surgeries. Integration of multimodal
imaging and predictive analytics enhanced perioperative
decision-making and patient satisfaction metrics.

Overview of Included Studies

The reviewed studies demonstrated a progressive adoption

of deep learning (DL) and convolutional neural networks

(CNNs) from 2015 onward, with validation metrics improving

substantially post-2020. Dataset sizes ranged from 950 to

5,200 annotated images. External validation was performed

in 6/10 studies, and multicentric data were utilized in 3.

Model architectures included:

«  CNN (ResNet-50, VGG-16, InceptionV3) for classification
and morphometric tasks [7,8,32].

*  SVM + CNN hybrids for orbital disease classification [10].

*  GAN-based facial automated
periocular recognition and surgical planning [14].

analysis models for

Quantitative Performance

Across all included studies:

«  Mean diagnostic accuracy: 91.9%

*  Mean AUC: 0.92

*  Mean sensitivity: 90.7%

*  Mean specificity: 89.5%

CNN-based models showed superior performance (AUC >
0.94) compared to hybrid or SYM-only approaches (AUC 0.87-
0.90) [7,10,33].

Table 1. Table summarizes the comparative performance

metrics of different artificial intelligence (Al) model

architectures applied in oculoplastic imaging analysis.

Metric CNN-based | Hybrid models | GAN/CNN
models models

Mean Accuracy (%) | 93.7 89.4 95.1

Mean AUC 0.95 0.88 0.97

Validation Type External Multicentric External

Convolutional Neural Network (CNN)-based models

demonstrated high mean accuracy (93.7%) and strong
discriminative ability (AUC = 0.95) when validated on external
datasets. Hybrid models, integrating CNN with traditional
machine learning or handcrafted feature approaches, showed
moderately lower performance (mean accuracy = 89.4%, AUC
= 0.88) under multicentric validation conditions, indicating
variable generalizability. Generative Adversarial Network
(GAN)/CNN hybrid models achieved the highest overall
accuracy (95.1%) and AUC (0.97) under external validation,
suggesting superior capability in feature extraction and image
synthesis for diagnostic classification tasks.

Key Findings by Application

1. Eyelid Tumor Diagnosis: Li et al. (2022) reported 93.5%
accuracy and AUC 0.95 in classifying malignant eyelid
tumors using ResNet-50 CNN, validated across 3 centers
[8].

2. Ptosis Detection: Hung et al. (2021) demonstrated 91.2%
accuracy using CNN (VGG-16) for ptosis grading, validated
against clinician-labeled images [7].

3. Periocular Lesion Detection: Saha et al. (2020) achieved
94.8% accuracy using ensemble CNNs (Inception +
ResNet) on periocular dermoscopic images [3].

4. Orbital Disease Analysis: Michelutti et al. (2025) developed
a SVM + CNN hybrid model with AUC 0.88 for orbital
pathology classification [4].

5. Eyelid Morphometrics: Ahemaiti et al. (2025) proposed
a deep CNN regression model for palpebral margin
quantification with AUC 0.94 [5].

6. Facial Al for Oculoplastics: Chan et al. (2024) integrated
GAN and CNN architectures for periocular recognition
and aesthetic prediction with AUC 0.97, the highest
reported [6].

Visualization of Results

Figure 3 illustrates the diagnostic accuracy of artificial
intelligence (Al) models employed in oculoplastic research
between 2000 and 2025. Each bar represents the mean
accuracy (%) reported in individual peer-reviewed studies.
Across the analyzed literature, model performance ranged
from approximately 87% to 94%, indicating consistently high
diagnostic reliability. CNN-based and hybrid deep learning
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models, as reported by Li et al. (2022) [1], Ahemaiti et al. (2025) [5], and Chan et al. (2024) [6], demonstrated superior accuracy
compared to earlier frameworks. These findings highlight the progressive enhancement in Al-driven diagnostic precision in
oculoplastic imaging and disease classification over the past two decades.

Figure 3. Comparative diagnostic accuracies of Al models across major oculoplastic studies from 2000 to 2025.

60

40t

Accuracy (%)

20

Summary of Al Performance

Table 2 summarizes the comparative diagnostic performance of artificial intelligence (Al) algorithms applied in oculoplastic
imaging and disease classification from 2020 to 2025. Among the reviewed studies, GAN + CNN architectures (Chan et al., 2024
[14]) achieved the highest diagnostic accuracy (95.1%) and AUC (0.97) when validated externally, underscoring the enhanced
feature extraction and image synthesis capability of generative models. Traditional CNN-based networks such as ResNet-50
(Li et al., 2022 [1]) and VGG-16 (Hung et al., 2021 [2]) also demonstrated strong performance, with accuracies exceeding 90%
and AUC values above 0.90, particularly when tested on diverse datasets. Hybrid frameworks that combined deep learning
with classical machine learning approaches (e.g., SVM + CNN, Michelutti et al., 2025 [10]) yielded slightly lower accuracies
(89.4%, AUC = 0.88) under multicentric validation, possibly reflecting data heterogeneity. Multimodal and ensemble Al models
(Quaranta-Leoni et al., 2025 [16]; Anton et al., 2022 [33]) exhibited moderate-to-high accuracy, reinforcing the potential of
integrative and meta-analytical methods in oculoplastic diagnostics. Overall, the dataset indicates a progressive improvement
in diagnostic reliability and generalizability across model generations, with external validation emerging as the gold standard
for clinical applicability.

Table 2. Comparative diagnostic performance of Al algorithms used in oculoplastic studies.

Author (Year) Algorithm Dataset Size Accuracy (%) AUC Validation

Li et al. (2022) [1] CNN (ResNet-50) 3500 93.5 0.95 External

Hung et al. (2021) [2] CNN (VGG-16) 2100 91.2 0.91 Internal + External
Saha et al. (2020) [32] Ensemble CNN 2800 94.8 0.96 Cross-validation
Michelutti et al. (2025) [10] SVM + CNN 1200 89.4 0.88 Multicentric
Ahemaiti et al. (2025) [12] Deep CNN 1600 92.7 0.94 Internal

Chan et al. (2024) [14] GAN + CNN 3200 95.1 0.97 External
Quaranta-Leoni (2025) [16] Deep learning multimodal 950 88.2 0.87 Multicentric
Anton et al. (2022) [33] Ensemble Al models 5200 91.0 0.90 Meta-analysis

The table presents model type, dataset size, mean diagnostic accuracy, area under the curve (AUC), and validation method.
CNN-based architectures consistently achieved high diagnostic performance, while GAN/CNN hybrid and ensemble models
showed superior generalization across external datasets, highlighting their promise for real-world clinical translation in
oculoplastic imaging.
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Heterogeneity and Validation

The heterogeneity among included studies (12 = 74%)
indicated moderate inconsistency in performance due to
dataset variation and algorithm choice. Models with external
or multicentric validation displayed more reliable outcomes
[10,14]. Studies relying solely on internal validation often
showed inflated performance metrics, consistent with earlier

systematic Al reviews in ophthalmology [33].

DISCUSSION

Al's capacity to detect minute visual cues and integrate
multidimensional data makes it an invaluable adjunct in
oculoplastic diagnostics. The present systematic review
synthesizes 25 studies published between 2000 and 2025
investigating the diagnostic and management utility of
Artificial Intelligence (Al) in oculoplastic diseases. The findings
underscore a significant evolution in the adoption of deep
learning (DL) and convolutional neural networks (CNNs) for
periocular and orbital disease assessment. Over the last
decade, Al has shifted from experimental applications to
clinically validated systems capable of augmenting ophthalmic
decision-making [33-35].

Diagnostic Accuracy and Model Performance
studies, Al
architectures-achieved diagnostic accuracies above 90% and
AUC values ranging from 0.88 to 0.97, demonstrating excellent
discrimination between benign and malignant periocular
conditions [7,8,32]. Li et al. (2022) reported a ResNet-50 CNN
achieving AUC 0.95 for malignant eyelid tumor detection
using multicentre image datasets [7]. Similarly, Hung et al.

Across all models particularly CNN-based

(2021) demonstrated 91.2% diagnostic accuracy in automated
ptosis recognition, outperforming ophthalmology residents
in consistent classification [8]. Ensemble and hybrid Al
systems integrating multiple CNN backbones, such as ResNet
and Inception architectures, further enhanced precision in
periocular lesion analysis (AUC 0.96) [14]. Moreover, Ahemaiti
et al. (2025) introduced a deep CNN regression model that
accurately quantified palpebral fissure dimensions from
photographs with minimal manual input (AUC 0.94) [12].
Such high-performance metrics indicate that Al systems are
reaching diagnostic reliability comparable to expert clinicians.

Clinical Integration and Surgical Applications

The integration of Al into oculoplastic practice extends beyond
diagnosis to surgical planning and postoperative outcome
prediction. Chan et al. (2024) developed GAN-augmented
CNNs that automatically assessed periocular morphology
and predicted aesthetic outcomes following blepharoplasty,
offering real-time, data-driven feedback for surgeons [14].
Similarly, Quaranta-Leoni (2025) emphasized that Al-driven

analytics could improve preoperative planning for orbital
decompression and eyelid reconstruction, ensuring precision
alignment and symmetry [16]. In reconstructive and cosmetic
oculoplastic procedures, Al has been used to evaluate patient
satisfaction, predict complication likelihood, and simulate
surgical results, bridging functional and aesthetic domains
[10,31]. The use of multimodal imaging—combining MRI,
CT, and digital photography have enhanced the predictive
accuracy of Alalgorithmsin periocular pathology management
[36-38].

Validation, Bias, and Generalizability

Despite these advances, several studies identified challenges
related to datavalidation, overfitting, and generalizability. Most
datasets originated from single institutions, often with limited
demographic diversity [34,40]. This limitation introduces
potential algorithmic bias, particularly in facial Al systems
trained predominantly on homogeneous ethnic cohorts [41].
Furthermore, internal validation dominated early research,
while external and multicentric validations only became more
frequent after 2020, as seen in Michelutti et al. (2025) and
Anton et al. (2022) [10,33]. Explainable Al (XAl) frameworks
are increasingly recognized as essential for clinical adoption.
Alack of model transparency undermines clinician confidence
and impedes regulatory approval [42,43]. Efforts to enhance
interpretability such as heatmap visualizations and saliency
mapping have been effective in demonstrating how CNNs
localize periocular features associated with pathology [44-46].

Ethical and Regulatory Considerations

Al implementation in oculoplastic practice raises ethical
concerns regarding patient privacy, data security, and consent
for image use. Large-scale image repositories often lack
consistent anonymization, creating vulnerabilities in patient
confidentiality [47]. Moreover, the absence of standardized
ethical frameworks and international regulatory oversight
delays clinical translation [48,49]. The FDA and European
Medicines Agency (EMA) have begun evaluating Al-assisted
diagnostic systems, but regulatory pathways for surgical Al
remain limited. Transparency in Al decision-making, coupled
with clinician involvement in algorithmic refinement, will be
crucial for safe adoption in oculoplastic settings [50,51].

Future Perspectives

The next generation of Al in oculoplastics is expected to
integrate federated learning, 3D morphometric analysis, and
robotic-assisted microsurgery [52]. Federated learning, which
enables model training across multiple institutions without
centralized data pooling, can mitigate privacy concerns and
improve generalizability [53,54]. Furthermore, combining
Al-driven surgical simulation with augmented reality (AR)
may transform preoperative visualization and enhance
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surgical precision [55,56]. Continued collaboration among
ophthalmologists, computer scientists, and bioethicists will
be essential to develop robust, transparent, and ethically
compliant Al systems capable of real-world implementation.

LIMITATIONS

The present review was limited by variability in datasets and
methodological heterogeneity among studies. Meta-analytic
synthesis was restricted due to inconsistent reporting of
performance metrics. Additionally, publication bias may have
inflated diagnostic performance estimates, as negative or
non-significant Al studies are less likely to be published.

CONCLUSION

Artificial intelligence has rapidly emerged as a transformative
force in the field of oculoplastic surgery, demonstrating
substantial potential in enhancing diagnostic precision,
optimizing surgical planning, and improving postoperative
outcome assessment. The evidence reviewed underscores
Al's capacity to augment clinical decision-making and promote
personalized patient care through advanced image analysis
and predictive modeling. However, the journey toward
implementation demands
validation studies to ensure reproducibility, generalizability,

clinical rigorous multicentric
and fairness across diverse populations. Equally vital is
the establishment of transparent ethical frameworks and
explainable Al systems that can foster clinician trust and
patient safety. Looking ahead, the convergence of Al with
robotic-assisted oculoplastic surgery holds the promise
of redefining surgical precision, efficiency, and outcomes.
Future research should therefore prioritize interdisciplinary
collaborations that bridge ophthalmology, data science, and
bioethics to translate current innovations into safe, reliable,
and equitable clinical practice.
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