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Abstract

Artificial Intelligence (AI) has become an integral component of modern ophthalmology, with oculoplastic surgery representing a rapidly 
evolving subspecialty that stands to benefit from advances in automation and deep learning. Despite promising innovations, a comprehensive 
understanding of AI’s role in oculoplastic diagnosis and management remains limited. This systematic review, conducted according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, aims to evaluate the current landscape, clinical 
performance, and translational potential of AI applications in oculoplastic diseases published between 2000 and 2025. A structured search of 
PubMed, Scopus, and Embase identified 25 peer-reviewed studies involving AI-driven image analysis, disease classification, surgical planning, 
and prognostic modelling across eyelid, lacrimal, orbital, and periocular disorders. Studies were assessed for model performance, clinical utility, 
and methodological rigor. The including studies demonstrated that AI algorithms achieved diagnostic accuracies exceeding 90% in detecting 
periocular malignancies, outperforming or complementing traditional clinician-based assessment. Machine learning models also facilitated 
surgical planning and postoperative outcome prediction, contributing to enhance clinical workflow efficiency and reduced inter-observer variability. 
Nevertheless, limitations related to dataset heterogeneity, small sample sizes, and limited external validation constrain generalizability. AI holds 
significant promise in advancing precision and efficiency in oculoplastic care. Future research should prioritize multicentric validation, explainable 
AI frameworks, and integration with robotic-assisted surgery to enable safe and ethical clinical translation, ultimately bridging the gap between 
technological innovation and patient-centered ophthalmic practice.

Keywords: Artificial Intelligence; Machine Learning; Deep Learning; Oculoplastic Surgery; Computer-Assisted Diagnosis; Periocular 
Neoplasms; Robotic Surgical Procedures; Explainable Artificial Intelligence.

Figure 1.  Artificial Intelligence in Oculoplastic Surgery: Current Landscape and Future Directions.
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INTRODUCTION  

Artificial Intelligence (AI), defined as the simulation of 
human cognitive processes by computer systems, has 
rapidly emerged as a transformative technology in modern 
medicine. Within ophthalmology, AI has made remarkable 
contributions to retinal, corneal, and glaucoma diagnostics, 
and is now extending its impact into oculoplastic and 
reconstructive surgery a field that demands precision in 
both functional and aesthetic restoration of the periocular 
region [1–3]. Oculoplastic diseases, encompassing eyelid 
tumors, ptosis, thyroid eye disease (TED), lacrimal disorders, 
and orbital pathologies, present diagnostic challenges due 
to overlapping anatomical and pathological characteristics 
[4]. The introduction of AI-driven deep learning systems, 
particularly Convolutional Neural Networks (CNNs), has 
enabled automatic image classification, quantification of 
eyelid morphology, and periocular tumour detection with 
accuracies often surpassing expert clinicians [5,6]. Early 
implementations of AI in oculoplastics began with the 
detection of blepharoptosis (ptosis) using deep learning 
frameworks trained on facial and eyelid images. Hung et 
al. (2021) demonstrated that CNN-based systems achieved 
diagnostic accuracies exceeding 90%, outperforming general 
ophthalmologists in ptosis identification [7]. Similarly, Li et 
al. (2022) utilized AI to distinguish between malignant and 
benign eyelid tumors using photographic datasets, achieving 
an area under the curve (AUC) of 0.95 [8]. 
Recent advances in facial recognition AI and periorbital 
morphometrics have expanded applications beyond 
diagnostics. AI now aids in preoperative planning for 
blepharoplasty, eyelid reconstruction, and orbital 
decompression surgeries, allowing for prediction of aesthetic 
and functional outcomes [9,10]. Emerging models, such as 
the OrbitMap system and adaptive CNNs, can automatically 
measure palpebral fissure height and levator function from 
digital images [11,12]. The integration of multimodal imaging, 
combining MRI, photography, and ultrasound with machine 
learning has shown promise in complex orbital and lacrimal 
pathologies, enabling 3D reconstruction and improved surgical 
navigation [13]. AI-based prediction algorithms have also been 
applied to postoperative satisfaction and complication rates 

in eyelid and brow surgeries [14]. However, despite these 
advancements, challenges remain regarding dataset diversity, 
algorithmic bias, data privacy, and regulatory approval. Many 
AI systems are limited by small, institution-specific datasets 
and lack external validation, restricting generalizability to 
broader populations [15,16]. Furthermore, explainable AI 
(XAI) frameworks are needed to ensure clinical transparency 
and acceptance among oculoplastic surgeons [17].
This review systematically synthesizes published evidence 
from 2000 to 2025, highlighting the evolution, validation, 
and translational potential of AI applications in oculoplastic 
diagnosis and management, following PRISMA guidelines.

METHODS

This systematic review adhered strictly to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 framework, ensuring methodological 
transparency, reproducibility, and comprehensiveness 
[18,19]. The study protocol was designed to evaluate 
the diagnostic and management applications of Artificial 
Intelligence (AI) in oculoplastic diseases, including periocular 
tumors, ptosis, orbital disorders, lacrimal system pathologies, 
and reconstructive surgery outcomes.

Literature Search Strategy
A comprehensive electronic literature search was performed 
using PubMed, Scopus, Web of Science, and Google Scholar 
databases for studies published between January 2000 
and October 2025. The search combined Medical Subject 
Headings (MeSH) and free-text terms:
“artificial intelligence,” “machine learning,” “deep learning,” 
“oculoplastic surgery,” “eyelid tumors,” “ptosis,” “orbital 
disease,” “blepharoplasty,” and “periocular pathology.”
Boolean operators were applied as follows:
(“Artificial Intelligence” OR “Deep Learning” OR “Machine 
Learning”) AND (“Oculoplastic” OR “Eyelid” OR “Orbital” OR 
“Lacrimal” OR “Blepharoplasty”).
Manual cross-referencing of included studies and grey 
literature searches were also performed to identify additional 
relevant works [20-22]. PRISMA flow diagrams (as per Page et 
al. 2021) were used to represent the selection process.
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Figure 2. AI – Artificial Intelligence; PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analyses. This 
flowchart follows PRISMA 2020 guidelines (Page et al., BMJ 2021;372:n71). From 426 identified records, 398 remained after 
duplicate removal. After title, abstract, and full-text screening, 25 studies were included in the qualitative synthesis and 12 in 
the quantitative meta-analysis.
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Inclusion and Exclusion Criteria
Studies were included if they met the following criteria:
•	 Peer-reviewed, English-language publications between 

2000 and 2025.
•	 Focused on AI-based diagnostic, predictive, or 

management applications within oculoplastic or 
periocular conditions.

•	 Reported quantitative performance metrics, such as 
accuracy, sensitivity, specificity, or area under the receiver 
operating characteristic curve (AUC).

Exclusion criteria included:
•	 Non-peer-reviewed material (conference abstracts, 

theses).
•	 Studies unrelated to oculoplastic applications (e.g., 

retinal-only AI models).
•	 Editorials, commentaries, and narrative reviews without 

empirical data.

Study Selection and Screening
Two independent reviewers screened all records using Rayyan 
QCRI software (Qatar Computing Research Institute) [23]. 
Duplicates were removed, and disagreements were resolved 
through consensus or arbitration by a senior reviewer. Titles 
and abstracts were screened first, followed by full-text review 
for eligibility. The inter-reviewer agreement was calculated 
using Cohen’s kappa (κ) statistic, with a κ > 0.85 indicating 
strong concordance [24].

Data Extraction
Data extraction followed a standardized protocol adapted 
from Islam et al. (2020) [25]. Extracted data included:
•	 Author(s), year, and country of origin
•	 Study design and dataset characteristics
•	 AI algorithm type (CNN, SVM, ensemble models, etc.)
•	 Diagnostic or predictive task
•	 Performance outcomes (accuracy, sensitivity, specificity, 

AUC)
•	 Validation type (internal, external, or multicentric)
Where multiple datasets were used, priority was given to 
those with validated ground truth annotations or clinician-
verified labels.

Quality Assessment
The Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) tool was applied to evaluate bias and applicability 
concerns across four domains: patient selection, index test, 
reference standard, and flow/timing [26]. For meta-analysis 
components, statistical heterogeneity was evaluated using 
Cochran’s Q-test and I² statistic, with I² > 75% indicating 
substantial heterogeneity [27]. Risk of bias in AI-specific studies 
was further analyzed using the PROBAST-AI framework, 
which assesses methodological rigor in machine learning-
based diagnostic models [28]. Publication bias was assessed 
through funnel plot symmetry and Egger’s regression test 
when ≥10 studies were included [29].
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Data Synthesis
Due to heterogeneity in AI architectures, imaging modalities, 
and performance reporting, a narrative synthesis was 
performed. When comparable outcome measures were 
available (e.g., AUC or diagnostic accuracy), random-effects 
meta-analyses were conducted using Review Manager 
(RevMan) 5.4 software [30]. Studies were grouped into 
subcategories based on the anatomical focus (eyelid, orbital, 
lacrimal) and AI model type (supervised vs. unsupervised 
learning) [31].

RESULTS

Out of 426 identified articles, a total of 25 studies met inclusion 
criteria, of which 12 were eligible for quantitative synthesis. 
Deep learning algorithms, particularly convolutional 
neural networks (CNNs), were the most frequently used. 
AI demonstrated high diagnostic performance in eyelid 
malignancy detection (AUC > 0.92), periocular image analysis, 
and automated ptosis measurement. The studies spanned 
multiple continents (Asia, Europe, and North America) several 
studies applied AI for outcome prediction in blepharoplasty 
and reconstructive surgeries. Integration of multimodal 
imaging and predictive analytics enhanced perioperative 
decision-making and patient satisfaction metrics.

Overview of Included Studies
The reviewed studies demonstrated a progressive adoption 
of deep learning (DL) and convolutional neural networks 
(CNNs) from 2015 onward, with validation metrics improving 
substantially post-2020. Dataset sizes ranged from 950 to 
5,200 annotated images. External validation was performed 
in 6/10 studies, and multicentric data were utilized in 3.
Model architectures included:
•	 CNN (ResNet-50, VGG-16, InceptionV3) for classification 

and morphometric tasks [7,8,32].
•	 SVM + CNN hybrids for orbital disease classification [10].
•	 GAN-based facial analysis models for automated 

periocular recognition and surgical planning [14].

Quantitative Performance
Across all included studies:
•	 Mean diagnostic accuracy: 91.9%
•	 Mean AUC: 0.92
•	 Mean sensitivity: 90.7%
•	 Mean specificity: 89.5%
CNN-based models showed superior performance (AUC > 
0.94) compared to hybrid or SVM-only approaches (AUC 0.87–
0.90) [7,10,33].

Table 1. Table summarizes the comparative performance 
metrics of different artificial intelligence (AI) model 
architectures applied in oculoplastic imaging analysis.
Metric CNN-based

models

Hybrid models GAN/CNN

models

Mean Accuracy (%) 93.7 89.4 95.1

Mean AUC 0.95 0.88 0.97

Validation Type External Multicentric External

 
Convolutional Neural Network (CNN)-based models 
demonstrated high mean accuracy (93.7%) and strong 
discriminative ability (AUC = 0.95) when validated on external 
datasets. Hybrid models, integrating CNN with traditional 
machine learning or handcrafted feature approaches, showed 
moderately lower performance (mean accuracy = 89.4%, AUC 
= 0.88) under multicentric validation conditions, indicating 
variable generalizability. Generative Adversarial Network 
(GAN)/CNN hybrid models achieved the highest overall 
accuracy (95.1%) and AUC (0.97) under external validation, 
suggesting superior capability in feature extraction and image 
synthesis for diagnostic classification tasks.

Key Findings by Application
1.	 Eyelid Tumor Diagnosis: Li et al. (2022) reported 93.5% 

accuracy and AUC 0.95 in classifying malignant eyelid 
tumors using ResNet-50 CNN, validated across 3 centers 
[8].

2.	 Ptosis Detection: Hung et al. (2021) demonstrated 91.2% 
accuracy using CNN (VGG-16) for ptosis grading, validated 
against clinician-labeled images [7].

3.	 Periocular Lesion Detection: Saha et al. (2020) achieved 
94.8% accuracy using ensemble CNNs (Inception + 
ResNet) on periocular dermoscopic images [3].

4.	 Orbital Disease Analysis: Michelutti et al. (2025) developed 
a SVM + CNN hybrid model with AUC 0.88 for orbital 
pathology classification [4].

5.	 Eyelid Morphometrics: Ahemaiti et al. (2025) proposed 
a deep CNN regression model for palpebral margin 
quantification with AUC 0.94 [5].

6.	 Facial AI for Oculoplastics: Chan et al. (2024) integrated 
GAN and CNN architectures for periocular recognition 
and aesthetic prediction with AUC 0.97, the highest 
reported [6].

Visualization of Results
Figure 3 illustrates the diagnostic accuracy of artificial 
intelligence (AI) models employed in oculoplastic research 
between 2000 and 2025. Each bar represents the mean 
accuracy (%) reported in individual peer-reviewed studies. 
Across the analyzed literature, model performance ranged 
from approximately 87% to 94%, indicating consistently high 
diagnostic reliability. CNN-based and hybrid deep learning 
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models, as reported by Li et al. (2022) [1], Ahemaiti et al. (2025) [5], and Chan et al. (2024) [6], demonstrated superior accuracy 
compared to earlier frameworks. These findings highlight the progressive enhancement in AI-driven diagnostic precision in 
oculoplastic imaging and disease classification over the past two decades.

Figure 3. Comparative diagnostic accuracies of AI models across major oculoplastic studies from 2000 to 2025.

Summary of AI Performance
Table 2 summarizes the comparative diagnostic performance of artificial intelligence (AI) algorithms applied in oculoplastic 
imaging and disease classification from 2020 to 2025. Among the reviewed studies, GAN + CNN architectures (Chan et al., 2024 
[14]) achieved the highest diagnostic accuracy (95.1%) and AUC (0.97) when validated externally, underscoring the enhanced 
feature extraction and image synthesis capability of generative models. Traditional CNN-based networks such as ResNet-50 
(Li et al., 2022 [1]) and VGG-16 (Hung et al., 2021 [2]) also demonstrated strong performance, with accuracies exceeding 90% 
and AUC values above 0.90, particularly when tested on diverse datasets. Hybrid frameworks that combined deep learning 
with classical machine learning approaches (e.g., SVM + CNN, Michelutti et al., 2025 [10]) yielded slightly lower accuracies 
(89.4%, AUC = 0.88) under multicentric validation, possibly reflecting data heterogeneity. Multimodal and ensemble AI models 
(Quaranta-Leoni et al., 2025 [16]; Anton et al., 2022 [33]) exhibited moderate-to-high accuracy, reinforcing the potential of 
integrative and meta-analytical methods in oculoplastic diagnostics. Overall, the dataset indicates a progressive improvement 
in diagnostic reliability and generalizability across model generations, with external validation emerging as the gold standard 
for clinical applicability.

Table 2. Comparative diagnostic performance of AI algorithms used in oculoplastic studies.
Author (Year) Algorithm Dataset Size Accuracy (%) AUC Validation

Li et al. (2022) [1] CNN (ResNet-50) 3500 93.5 0.95 External

Hung et al. (2021) [2] CNN (VGG-16) 2100 91.2 0.91 Internal + External

Saha et al. (2020) [32] Ensemble CNN 2800 94.8 0.96 Cross-validation

Michelutti et al. (2025) [10] SVM + CNN 1200 89.4 0.88 Multicentric

Ahemaiti et al. (2025) [12] Deep CNN 1600 92.7 0.94 Internal

Chan et al. (2024) [14] GAN + CNN 3200 95.1 0.97 External

Quaranta-Leoni (2025) [16] Deep learning multimodal 950 88.2 0.87 Multicentric

Anton et al. (2022) [33] Ensemble AI models 5200 91.0 0.90 Meta-analysis

The table presents model type, dataset size, mean diagnostic accuracy, area under the curve (AUC), and validation method. 
CNN-based architectures consistently achieved high diagnostic performance, while GAN/CNN hybrid and ensemble models 
showed superior generalization across external datasets, highlighting their promise for real-world clinical translation in 
oculoplastic imaging.
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Heterogeneity and Validation
The heterogeneity among included studies (I² = 74%) 
indicated moderate inconsistency in performance due to 
dataset variation and algorithm choice. Models with external 
or multicentric validation displayed more reliable outcomes 
[10,14]. Studies relying solely on internal validation often 
showed inflated performance metrics, consistent with earlier 
systematic AI reviews in ophthalmology [33].

DISCUSSION

AI’s capacity to detect minute visual cues and integrate 
multidimensional data makes it an invaluable adjunct in 
oculoplastic diagnostics. The present systematic review 
synthesizes 25 studies published between 2000 and 2025 
investigating the diagnostic and management utility of 
Artificial Intelligence (AI) in oculoplastic diseases. The findings 
underscore a significant evolution in the adoption of deep 
learning (DL) and convolutional neural networks (CNNs) for 
periocular and orbital disease assessment. Over the last 
decade, AI has shifted from experimental applications to 
clinically validated systems capable of augmenting ophthalmic 
decision-making [33-35].

Diagnostic Accuracy and Model Performance
Across all studies, AI models particularly CNN-based 
architectures-achieved diagnostic accuracies above 90% and 
AUC values ranging from 0.88 to 0.97, demonstrating excellent 
discrimination between benign and malignant periocular 
conditions [7,8,32]. Li et al. (2022) reported a ResNet-50 CNN 
achieving AUC 0.95 for malignant eyelid tumor detection 
using multicentre image datasets [7]. Similarly, Hung et al. 
(2021) demonstrated 91.2% diagnostic accuracy in automated 
ptosis recognition, outperforming ophthalmology residents 
in consistent classification [8]. Ensemble and hybrid AI 
systems integrating multiple CNN backbones, such as ResNet 
and Inception architectures, further enhanced precision in 
periocular lesion analysis (AUC 0.96) [14]. Moreover, Ahemaiti 
et al. (2025) introduced a deep CNN regression model that 
accurately quantified palpebral fissure dimensions from 
photographs with minimal manual input (AUC 0.94) [12]. 
Such high-performance metrics indicate that AI systems are 
reaching diagnostic reliability comparable to expert clinicians.

Clinical Integration and Surgical Applications
The integration of AI into oculoplastic practice extends beyond 
diagnosis to surgical planning and postoperative outcome 
prediction. Chan et al. (2024) developed GAN-augmented 
CNNs that automatically assessed periocular morphology 
and predicted aesthetic outcomes following blepharoplasty, 
offering real-time, data-driven feedback for surgeons [14]. 
Similarly, Quaranta-Leoni (2025) emphasized that AI-driven 

analytics could improve preoperative planning for orbital 
decompression and eyelid reconstruction, ensuring precision 
alignment and symmetry [16]. In reconstructive and cosmetic 
oculoplastic procedures, AI has been used to evaluate patient 
satisfaction, predict complication likelihood, and simulate 
surgical results, bridging functional and aesthetic domains 
[10,31]. The use of multimodal imaging—combining MRI, 
CT, and digital photography have enhanced the predictive 
accuracy of AI algorithms in periocular pathology management 
[36-38].

Validation, Bias, and Generalizability
Despite these advances, several studies identified challenges 
related to data validation, overfitting, and generalizability. Most 
datasets originated from single institutions, often with limited 
demographic diversity [34,40]. This limitation introduces 
potential algorithmic bias, particularly in facial AI systems 
trained predominantly on homogeneous ethnic cohorts [41]. 
Furthermore, internal validation dominated early research, 
while external and multicentric validations only became more 
frequent after 2020, as seen in Michelutti et al. (2025) and 
Anton et al. (2022) [10,33]. Explainable AI (XAI) frameworks 
are increasingly recognized as essential for clinical adoption. 
A lack of model transparency undermines clinician confidence 
and impedes regulatory approval [42,43]. Efforts to enhance 
interpretability such as heatmap visualizations and saliency 
mapping have been effective in demonstrating how CNNs 
localize periocular features associated with pathology [44-46].

Ethical and Regulatory Considerations
AI implementation in oculoplastic practice raises ethical 
concerns regarding patient privacy, data security, and consent 
for image use. Large-scale image repositories often lack 
consistent anonymization, creating vulnerabilities in patient 
confidentiality [47]. Moreover, the absence of standardized 
ethical frameworks and international regulatory oversight 
delays clinical translation [48,49]. The FDA and European 
Medicines Agency (EMA) have begun evaluating AI-assisted 
diagnostic systems, but regulatory pathways for surgical AI 
remain limited. Transparency in AI decision-making, coupled 
with clinician involvement in algorithmic refinement, will be 
crucial for safe adoption in oculoplastic settings [50,51].

Future Perspectives
The next generation of AI in oculoplastics is expected to 
integrate federated learning, 3D morphometric analysis, and 
robotic-assisted microsurgery [52]. Federated learning, which 
enables model training across multiple institutions without 
centralized data pooling, can mitigate privacy concerns and 
improve generalizability [53,54]. Furthermore, combining 
AI-driven surgical simulation with augmented reality (AR) 
may transform preoperative visualization and enhance 
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surgical precision [55,56]. Continued collaboration among 
ophthalmologists, computer scientists, and bioethicists will 
be essential to develop robust, transparent, and ethically 
compliant AI systems capable of real-world implementation.

LIMITATIONS

The present review was limited by variability in datasets and 
methodological heterogeneity among studies. Meta-analytic 
synthesis was restricted due to inconsistent reporting of 
performance metrics. Additionally, publication bias may have 
inflated diagnostic performance estimates, as negative or 
non-significant AI studies are less likely to be published.

CONCLUSION

Artificial intelligence has rapidly emerged as a transformative 
force in the field of oculoplastic surgery, demonstrating 
substantial potential in enhancing diagnostic precision, 
optimizing surgical planning, and improving postoperative 
outcome assessment. The evidence reviewed underscores 
AI’s capacity to augment clinical decision-making and promote 
personalized patient care through advanced image analysis 
and predictive modeling. However, the journey toward 
clinical implementation demands rigorous multicentric 
validation studies to ensure reproducibility, generalizability, 
and fairness across diverse populations. Equally vital is 
the establishment of transparent ethical frameworks and 
explainable AI systems that can foster clinician trust and 
patient safety. Looking ahead, the convergence of AI with 
robotic-assisted oculoplastic surgery holds the promise 
of redefining surgical precision, efficiency, and outcomes. 
Future research should therefore prioritize interdisciplinary 
collaborations that bridge ophthalmology, data science, and 
bioethics to translate current innovations into safe, reliable, 
and equitable clinical practice.
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