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ABSTRACT

Ecotoxicological classification risk index for soil (ECRIS), is a 
new classification system specific for soil risk assessment, 
which gives a comparative indication of the risk linked to 
environmental contamination by any chemical. In this work 
this parameter was estimated by quantitative structure–
activity relationship approaches by using interpretable 
molecular descriptors. Linear and nonlinear models were 
developed using multiple linear regressions (MLR) and 
artificial neural network (ANN) methods. Robustness and 
reliability of the constructed MLR and ANN models were 
evaluated by using the leave-one-out cross-validation 
method, which produces the statistics of Q2 MLR = 0.84, Q2 
ANN = 0.93. Furthermore, the chemical applicability domains 
of these models were determined via leverage approach. 
The results of this study indicated the ability of developed 
QSPR models in the prediction of ECRIS of various chemicals 
from their calculated molecular structural descriptors.

Keywords : Ecotoxicological classification risk index for soil; 
quantitative structure–activity relationship; artificial neural 
network; molecular descriptor; multiple linear regression.

1. INTRODUCTION

Today consideration of environmental risk assessment of 
chemical pollutants is very important. Several indicators 
for reporting environmental and human health conditions 
have been published and indicator frameworks have also 
been published for chemicals (Bunke and Oldenburg 2005), 
hazardous wastes (Peterson and Granados 2002) and 
hazardous material at landfill sites (Peterson and Williams 
1999). Some scoring and ranking systems have been adopted 
by authorities and regulatory centres mainly as first screening 
tools to identify the chemicals with greatest potential for 
adverse effects (Huijbregts et al. 2000). For instance, the 
SCRAM scoring and ranking assessment model (Snyder et al. 
2000) is one of these and one of the few systems that also takes 
the uncertainty into account when there is no data available. 
SCRAM is limited to chemicals found in the environment, 
because its aim is mainly to screen and order chemicals 
based on their profile of persistence, bioaccumulation and 
toxicity. Some indicators have been developed as decision 
support system tools, to assess the potential environmental 
or economic consequences of pesticide management systems 
(HAIR 2006; United Nation 2007). The indicators should track 
temporal risk trends in agricultural pesticide usage on different 
geographical scales (field scale, regional scale, national scale) 
and should follow up the progress in meeting pesticide 
reduction goals. HAPERITIF (Calliera et al. 2006) is one of these 
indicators for monitoring pesticide risk trends attributable 
to dietary pesticide exposure on various geographic and 
temporal scales, while ERIP (Finizio et al. 2001) is related to 
the ecotoxicological effects in soil. Soil contamination from 
point sources is a worldwide problem most often related to 
current activities, industrial plants no longer in operation, past 
industrial accidents and improper municipal and industrial 
waste disposals. One important criteria for assessment of 
chemicals, is ecotoxicological classification risk index for soil 
(ECRIS) (Senese et al. 2010). It is a semi-quantitative index for 
estimating risk based on several toxicity data and on various 
kinds of exposure information. Evaluating ecological risk is 
complex, since it requires detailed knowledge of the biotic and 
abiotic components of the considered ecosystem, in order to 
obtain a realistic estimate of all the exposure pathways of the 
contaminants. Such an approach is not only very expensive in 
terms of human and economic and time resources, but it also 
needs support by developments and integration of different 
scientific areas. Therefore developing of theoretical methods 
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for prediction of environmental risk of pollutant is very 
important. One of these methods is quantitative structure 
– property relationship (QSPR) approaches. Quantitative 
structure–property relationship (QSPR) is one of the most 
promising methods, which explore a pattern in data by using 
descriptors derived from molecular structure to predict the 
activity/property of new and untested chemicals possessing 
similar molecular features.
 
A number of QSPR studies reported:
In a promising work, QSPR modeling of soil sorption 
coefficients (KOC) of Pesticides using SPA-ANN and SPA-MLR 
were reported by N. Goudarzi and co-workers (Goudarzi 
et al. 2009). In this study A quantitative structure−property 
relationship (QSPR) study was conducted to predict the 
adsorption coefficients of some pesticides. The successive 
projection algorithm feature selection (SPA) strategy was used 
as descriptor selection and model development method. 
Modeling of the relationship between selected molecular 
descriptors and adsorption coefficient data was achieved by 
linear (MLR) and nonlinear (ANN) methods. The QSPR models 
were validated by cross-validation as well as application of 
the models to predict the KOC of external set compounds, 
which did not contribute to model development steps. Both 
linear and nonlinear methods provided accurate predictions, 
although more accurate results were obtained by the ANN 
model. The root-mean-square errors of test set obtained by 
MLR and ANN models were 0.3705 and 0.2888, respectively. 
Another work is Development of QSAR’s in soil ecotoxicology: 
Earthworm toxicity and soil sorption of chlorophenols, 
chlorobenzenes and chloroanilines were reported by A.M. 
Van Gestel and W.C. Ma (Van Gestel and Ma 1993). In this 
study Soil adsorption and the toxicity of four chloroanilines 
for earthworms were investigated in two soil types. The 
toxicity tests were carried out with two earthworm species, 
Eisenia andrei and Lumbricus rubellus. LC50 values in mg 
kg−1 dry soil were recalculated towards molar concentrations 
in pore water using data from soil adsorption experiments. 
An attempt has been made to develop Quantitative Structure 
Activity Relationships (QSAR’s) using these results and data on 
five chlorophenols and dichloroaniline in four soils and five 
chlorobenzenes in two soils published previously. Significant 
QSAR relationships were obtained between 1) adsorption 
coefficients (log K om ) and the octanol/water partition 
coefficient (log k ow ), and 2) LC50 values (in itμmol L−1 soil pore 
water) and log K ow . It can be concluded that both earthworm 
species tested are equally sensitive to chlorobenzenes and 
chloroanilines, E. andrei is more sensitive than L. rubellus 
to chlorophenols. Moreover QSPR study on the soil-water 
partition coefficient of polychlorinated biphenyls by using 
artificial neural network were done by L. Jiao (Jiao 2012). 
They reported the practicable quantitative structure property 

relationship (QSPR) model for predicting the soil-water 
partition coefficient, Koc, of 16 polychlorinated biphenyls 
(PCBs). The structure of the investigated PCBs is encoded by 
five quantum structural descriptors and on topological index. 
The calibration model of Koc was developed by using artificial 
neural network (ANN). The input variables of ANN were 
generated from 6 structural descriptors by using principal 
component analysis (PCA). Leave one out cross validation was 
carried out to assess the predictive ability of the developed 
model. The prediction RMS%RE for the 16 PCBs is 6.35. The R2 
between the predicted and experimental logKoc is 0.8522. It 
is demonstrated that ANN combined with PCA is a practicable 
method for developing QSPR model for Koc of these PCBs. 
Also Development of QSARs for the toxicity of chlorobenzenes 
to the soil dwelling springtail Folsomia candida were reported 
by D. Giesen and co-workers (Giesen et al. 2012). The purpose 
of their study was to developed quantitative structure-activity 
relationships (QSARs) for the toxicity of nine chlorinated 
benzenes to the soil-dwelling collembolan Folsomia candida 
in natural LUFA2.2 (Landwirtschaftliche Untersuchungs und 
Forschungsanstalt [LUFA]) standard soil and in Organisation 
for Economic Co-operation and Development artificial soil. 
Toxicity endpoints used were the effect concentrations causing 
10% (EC10) and 50% (EC50) reduction in the reproduction of 
the test organism over 28 d, while lethal effects on survival 
(LC50) were used for comparisons with earlier studies. 
Chlorobenzene toxicity was based on concentrations in 
interstitial water as estimated using nominal concentrations 
in soil and literature soil–water partition coefficients. 
Additionally, for LUFA2.2 soil the estimated concentrations 
in interstitial water were experimentally determined by 
solid-phase microextraction measurements. Measured 
and estimated concentrations showed the same general 
trend, but significant differences were observed. With the 
exception of hexachlorobenzene, estimated EC10 and EC50 
values were all negatively correlated with their logKow and 
QSARs were developed. However, no correlation for the 
LC50 could be derived and 1,2,4,5-tetrachlorobenzene and 
hexachlorobenzene had no effect on adult survival at all. The 
derived QSARs may contribute to the development of better 
ecotoxicity-based models serving the REACH program. In the 
present work we try to generate QSPR models based on MLR 
and ANN to predict the ECRIS of some organic compounds.

2. MATERIALS AND METHODS

The main steps involved in developing a QSPR model are 
(a) selection of the data set, (b) calculation of molecular 
descriptors, (c) fitting the statistical model, (d) validation of 
the model and (e) Assessing the applicability domain.
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2.1. Data set
Data set included 60 common molecules that were found in various landfills leachate of north Italy and are shown in Table 1 
(Senese et al. 2010). The ECRIS values of data set ranged from 1.32 to 58.44 for 2-Imidazolidinthyone  and  4.4’-(Methylethylidene)
bis-phenol, respectively. Data set was splitted to training, internal and external test sets by Y- ranking method, that each of 
them has 49, 6 and 5 members, respectively. 

Table 1

Data set and corresponding observed MLR and ANN predicted values of ECRIS

Number Chemical name (ECRIS) EXP (ECRIS) MLR (ECRIS) ANN

1 4.4’-(Methylethylidene)bis-phenol 58.44 53.23 56.98

2 Dichloro-Benzophenone 57.00 48.47 57.46

3 N,N’-dicyclohexyilthiourea 44.51 40.86 44.15

4 4-Chloro-3-methyl-phenol 44.47 31.85 42.49

5i p-Terbuthyl-phenol 43.90 24.42 37.24

6 2,4-Bis-1-methylethylphenol 43.82 41.71 45.31

7 Isothyocyanate cyclohexane 40.38 43.78 41.65

8 4.4’-Methylenebis-phenol 39.02 43.46 38.80

9 2,6-Bis-(1,1-dimethylethyl)-phenol 37.52 38.41 36.23

10e Benzyl-butyl-phthalate 37.40 43.04 56.66

11 N,N’-Dicyclohexylurea 35.49 37.96 35.10

12 2-Methyl-thyobenzothiazole 28.53 21.97 28.99

13 Dimethylphenol 26.58 14.93 28.92

14 a,a,a,a-Tetramethylbenzen-dimethanol 23.58 19.87 24.76

15i a,a-Dimethylbenzen-methanole 23.39 21.85 35.27

16 4’,2-Methylpropyl-acetophenone 22.88 25.00 20.13

17 (1-Methylethyl)-phenol 22.85 23.82 23.06

18 2(3H)-Benzothiazolone 20.64 12.41 19.95

19 2-Mercaptobenzothiazole 19.41 21.45 19.36

20e 1,3-Bis(1-methylethenyl)-benzene 19.01 25.38 28.95

21 1-Ethyl-4-methoxy-benzene 17.33 9.50 17.35

22 Cumaranone 15.32 10.67 9.44

23 4-Methylphenol 15.14 14.97 14.93

24 Indole 14.25 14.58 14.38

25i 1-[4-(10-Hydroxy-1-methylethyl)phenyl]-ethanone 13.79 16.41 20.65

26 4-Ethyl-2-methoxy phenol 13.21 14.81 13.35

27 Phenol 11.63 8.36 10.91

28 1-Methyl-1-phenyl-idrazyne 10.76 6.10 7.39

29 1-Ethenyl-4-methoxy benzene 10.34 13.20 11.74

30e m-Xylene 9.33 10.85 11.44

31 Di-2-phenyl-1,2-propandiole 9.32 21.02 9.75

32 3,5,5-Trimethyl hexanoic acid 8.91 14.36 8.70

33 Benzothiazole 8.54 12.88 12.66

34 Hexanoic acid 8.10 -0.20 8.43

35i 1-Methoxyethylbenzene 8.07 7.61 8.47

36 Toluene 7.68 9.90 5.67
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37 o-Xylene 7.67 13.85 10.67

38 p-Xylene 7.67 12.62 6.77

39 1,3-Dihydro-2H-indolone 6.38 9.72 7.62

40e 4-Piperidinole 6.23 0.79 8.78

41 Tetracloroethylene 5.92 4.09 5.25

42 Acetophenone 5.74 8.49 3.66

43 Benzene propanoic acid 4.40 10.16 6.98

44 2-Hexanole 3.57 3.91 3.53

45i Trichloroethylene 3.55 0.94 -0.34

46 Benzene acetic acid 2.88 15.79 2.92

47 Carbon tetrachloride 2.50 4.13 3.62

48 1,2-Dichloropropane 2.50 3.40 1.16

49 Chloroform 2.45 0.65 1.18

50e Trichlorofluoromethane 2.36 4.29 -6.95

51 Tetramethylthyourea 2.12 10.93 2.42

52 Freon 113 2.12 11.11 1.93

53 4-Methylbenzen-solfonamyde 2.04 9.78 6.35

54 2,2-Dimethyl-1,3-propandiole 2.00 3.29 1.35

55i Caprolactame 1.74 -1.06 4.19

56 1,3-Propandiole-2-ethyl-2-hydroxymethyl 1.72 11.49 2.04

57 Tetrahydro-1,1-dioxydethiofene 1.72 -10.48 3.46

58 1,1,1-Trichloro ethane 1.64 1.03 2.13

59 1-(2-Methoxy propoxy)-propanole 1.64 3.39 1.29

60 2-Imidazolidinthyone 1.32 1.18 0.79
i Internal test set.
e External test set.

2.2. Descriptor calculation and screening
Molecular descriptors are used to encode molecular structural features with QSPR aims. In order to calculate descriptors, the 
chemical structures of molecules were drawn by Hyperchem package (Version 7) and optimized by the AM1 semiempirical 
method (Hyperchem 2002). After geometry optimization, Hyperchem output files were used by Dragon program  as input to 
calculate molecular descriptors (Todeschini et al. 2003). Then descriptors that have high correlation with each other (R>0.9), 
and descriptors with same or near the same values were eliminated from the pool of descriptors. Variable selection is one 
of the most important steps in QSPR model development, which is especially important when one is required to deal with a 
large or even over whelming variable set. In order to determine the optimum number of descriptors from the remaining 429 
descriptors the stepwise multilinear regression was used.
 In order to determine the optimum number of descriptors in the model the value of R2 was calculated and   plotted versus the 
number of descriptors in the model (Figure 1, break- point procedure). As can be seen in this figure there is not any significant 
improvement in R2 by adding more than six descriptors to the model. Therefore these descriptors were selected to developing 
MLR and ANN models. The selected descriptors are;  Radial Distribution Function - 045 / weighted (RDF045v), Moriguchioctanol-
water partition coefficient (logP) (MLOGP), hydrophilic factor (Hy), 3D-MoRSE - signal 13 / unweighted (Mor13u), leverage-
weighted autocorrelation of lag 4 / unweighted (HATS4u) and leverage-weighted autocorrelation of lag 5 / weighted by mass 
(HATS5m). Detailed description of these descriptors can be found in the hand book of molecular descriptors by todeschini 
(Todeschini and Consonni 2000). Table 2 indicate the correlations matrix between these descriptors. As can be seen in this 
table there is not any high correlations between selected molecular descriptors.
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Figure 1

Figure 1. The plot of R2 against number of descriptor.

Table 2

The correlations matrix among selected descriptors

Descriptors Mor13u Hy HATS4u HATS5m MLOGP RDF045v

Mor13u 1 -0.197 0.311 0.071 0.183 0.230

Hy 1 0.230 -0.077 -0.451 -0.053

HATS4u 1 0.138 -0.367 0.046

HATS5m 1 0.272 0.509

MLOGP 1 0.492

RDF045v 1

2.3. Diversity analysis
In order to evaluate the prediction power of developed QSPR models (external validation test), data set must be divided 
to training and test sets. The common selection procedure, which is used for data set splitting is random selection. In this 
method the available data will be splitted without any bias for structure and there is a great probability of selecting chemicals 
outside the model structural application domain (AD) in the prediction set. Thus, the predictions for these chemicals could be 
unreliable, simply as they are extrapolated by the model. The other method is y- ranking procedure. In this method the data 
set is sorted in an ascending or descending manner according to their ECRIS value.  Then test sets compounds were selected 
from this list by desirable distances from each other and remaining was considered as training set. This method was used to 
splitting of data set in the present work.
The obtained training set consist of 49 molecules and was used for model generation, while the internal test set had 6 
compounds and was used for preventing over training of ANN model and the external test set had 5 members and was used to 
evaluate the predictability of the ANN model. In the case of MLR model internal and external test sets were considered as test 
set. Even by this algorithm there is no guarantee that the training and test sets be scattered over the whole area occupied by 
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representative points in thedescriptor space (representativity), and that the training set be distributed over an area occupied 
by representative points for the whole dataset. To examine the diversity of data set, the mean distances of one sample to the 
remaining ones ( i) were computed from descriptor space matrix as follows:

Where  is a distance score for two different compounds,which can be measured by the Euclideandistance norm based on 
thecompound’sdescriptors ( and  ):

Then the mean distances were normalized within the interval of zero to one and the resulting values were plotted against 
ECRIS values. Figure 2 indicates the results of diversity analysis on the data set. As can be seen from this figure, the structures 
of the compounds are diverse in all sets and the training set with a broad representation of the chemistry space was adequate 
to ensure the model’s stability and the diversity of test sets can prove the predictive capability of the model.

Figure 2

Figure 2. The results of diversity test.

3. RESULTS AND DISCUSSION

3.1. Linear modeling
Six selected descriptors were considered as independent variables and ECRIS value was considered as dependent variable for 
developing linear model. The specification of obtained MLR model is shown in eq. (3):

PECRIS = -9.797 (± 2.948) + 4.619 * RDF045v (± 0.676) + 7.351 * MLOGP (± 1.117) - 10.066 * Mor13u (± 2.455) +

6.047 * HATS4u (±2.645) + 56.753 * HATS5m (± 20.968) + 4.299 * Hy (± 1.670)                (3)

The calculated ECRIS values of molecules in data set by this model are shown in Table 1. The statistical parameters of this 
model are indicated in Table 3.
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3.2. Nonlinear modeling
In order to check any nonlinear relationships between selected molecular structural descriptors and ECRIS values, artificial 
neural network (Hagan et al. 1996) was applied by using STATISTICA (ver.7 ) software (STATISTICA 2004). Generally, each 
network is built from several layers: one input layer, one or more hidden layers, and one output layer. The node in each layer 
is connected to the nodes of the next layer by weights. The number of neurons in input and output layers is equal to the 
number of independent variables and dependent variables, respectively. The number of neurons in hidden layer would should 
be optimized. A three-layer network with a sigmoid transfer function was designed, for which selected 6 selected descriptors 
were used as its inputs and ECRIS values as outputs. After optimization of topology and training of network, it was used for 
prediction of ECRIS values of data set. The predicted values of ECRIS for training, internal and external test sets were shown in 
Table 1. The statistical parameters of this model are shown in table 3.
Comparison between these values and those obtained by MLR model, indicates the superiority of ANN model over MLR 
ones. Figure 3 indicates the plot of ANN calculated versus experimental values of ECRIS. The correlation coefficient between 
calculated and experimented values of ECRIS is 0.99, 0.90 and 0.98 for training, internal and external test sets, respectively.
Also the residuals of the ANN calculated ECRIS versus their experimental values are shown in Figure 4. Random propagation 
of residuals over zero line indicates that there is not any systematic error in developed ANN model.

Figure 3

Figure 3. The plot of the ANN calculated ECRIS against the experimental values.
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Figure 4

Figure 4. Plot of the ANN residuals against experimental values of ECRIS.

3.3. Model Validation
Validation is a crucial aspect of quantitative structure–activity relationship modeling. Cross validation provides a reasonable 
approximation of ability with which the QSPR predicts the activity values of new compounds. Leave one out cross validation 
(LOO) and leave many out cross validation (LMO) tests are two methods, which frequently used to validate QSPR models (Roy 
2007). In the case of leave-one-out cross-validation, each member of the sample in turn is removed, the full modeling method 
is applied to the remaining n-1 members, and the fitted model is applied to the holdback member. Cross-validated squared 
correlation coefficient Q2 is calculated according to the following formula:

where  and    indicate predicted and observed activity values, respectively and   indicate mean activity value. A model is 
considered acceptable when the value of Q2 exceeds 0.5. Also standardized predicted error sum of squares (SPRESS), are 
calculated according to the following equation:

In the above expression, n is the number of observations, and k is the number of descriptors in the model. The calculated 
values of Q2CV and SPRESS for LOO test on the ANN model are; 0.93 and 4.27, while these values are 0.84 and 6.5, respectively 
for the MLR model. Comparison between these values and also statistics in Table 3, indicates the superiority of ANN over MLR 
model. Also the Y- scrambling   procedure was performed to ensure that there is not any chance correlation within the data 
matrix (Rücker et al. 2007). The mean value of R2 after 30 Y-scrambling runs was 0.286, which does not indicate the probability 
of a chance correlation.
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Table 3

Statistical results of MLR and ANN models

Model Training set Internal test set External test set

R SE F RMSE R SE F RMSE R SE F RMSE

MLR 0.92 6.36 50.31 5.94 - - - - 0.82 8.63 18.49 6.82

ANN 0.99 1.77 3755.17 1.74 0.90 7.41 18.91 6.5 0.98 2.39 135.14 10.65

3.4. Applicability Domain
Before a QSPR model is put in to use for screening chemicals, its domain of application must be defined (Xia et al. 2009). A 
simple measure of a chemical being too far from the applicability domain of the model is its leverage   (Gramatica 2007), which 
is defined as (Netzeva et al. 2005):

Where   is the descriptor row-vector of the query compound and   is the   matrix of   model descriptor values for   training set 
compounds. The super script   refers to the transpose of the matrix/vector. The warning leverage   is, generally, fixed at  . To 
visualize the applicability domain of non linear model, the standardized residuals versus leverage (Hat diagonal) values were 
plotted (William plot) for an immediate and simple graphical detection of both the response outliers (i.e., compounds with 
standardized residuals greater than three standard deviation units> ) and structurally influential chemicals in the model ( > ). 
Figure 5 shows the results for this analysis of the nonlinear QSPR model. As can be seen from this figure, there is no response 
outlier compound both for training and test sets, which indicated further the reliability of the predictions from another aspect.

Figure 5

Figure 5. Applicability domain of non linear model; ( ).

3.5. Descriptors interpretation
In order to determine the relative importance of each variable in the ANN model, the sensitivity analysis was applied. This 
method is performed based on the sequential removal of variables by zeroing the specific connections weight for that specific 
input variable in the first layer of the ANN. For each sequentially zeroed input variable, root-mean-square error of prediction 
(RMSEP) as the prediction error of network was calculated. Generally RMSEP value increases in this way. Then, differences 
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between RMSEP and root-mean-square error of established ANN was calculated and shown as DRMSE. Each variable, which 
causes greater value of DRMSE, is more important. This procedure was applied on the developed ANN model. The calculated 
values of DRMSE are plotted in Figure6. As can be seen in this figure the most important descriptor was RDF045v.This descriptor 
is the radial distribution function - 045 / weighted by van der Waals volume and is the topology type descriptors.
The RDF descriptors are based on the distance distribution in a three-dimensional representation of the molecule. Besides 
information about inter-atomic distances they also give information about ring types, planar and non-planar systems and 
atom-types (Hemmer et al. 1999). The second descriptor was MLOGP. This descriptor is the Moriguchi octanol-water partition 
coefficient which indicates the liphophilicity of molecule (Moriguchi et al. 1992). The 3D-molecular representation of structure 
based on electron diffraction (3D-MORSE)-type descriptors that represent the 3D structure of a molecule is another descriptor 
in the model (Mor13u) (Soltzberg and Wilkins 1997). These types of descriptors are based on the idea of obtaining information 
from the 3D atomic coordinates by transforming that used in electron diffraction studies for preparing theoretical scattering 
curves (Schuur et al. 1996; Soltzberg and Wilkins 1997). The others descriptors are; HATS4u which is leverage-weighted 
autocorrelation of lag 4 / unweighted and HATS5m which is leverage-weighted autocorrelation of lag 5 / weighted by mass. 
These type of descriptors are computed on the basis of Hydrogen-filled molecule.
They are belonged to geometry, topology, and atom-weighted assembly (GETAWAY) descriptors (Consonni et al. 2002). These 
types of descriptors encode geometrical information given from influence matrix, topological information given by molecular 
graph, and chemical information from selected atomic properties. Another descriptor is hydrophilic factor, Hy. This descriptor 
is an empirical descriptor that  related to hydrophilicity of compounds (Todeschini et al. 1997), and defined as follows:

Where,  is the number of hydrophilic groups (-OH, -SH, -NH),    is the number of carbon atoms, and    the number of atoms 
(hydrogen excluded). The appearances of topological and electronic type descriptor in developed QSPR model indicates the 
role of steric and electronic interactions in ECRIS values of chemicals.

Figure 6

Figure 6. The results of sensitivity analysis on the ANN model.

4. CONCLUSION

In this study, MLR and ANN were used to build linear and nonlinear QSPR models to predict the soil contaminant index of 
some organic compounds. The statistical results of the developed models indicated the superiority of the nonlinear model 
over linear ones. These results revealed that there are some nonlinear relations between the soil contaminant index of some 
organic compounds and their structural molecular descriptors. Moreover, it was concluded that it was possible to predict the 
soil contaminant index of some organic compounds from their theoretical calculated molecular descriptors.
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