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Abstract

Background: Chronic pain affects over 20% of adults worldwide, and traditional pharmacological treatments have limitations in efficacy and 
safety concerns. Exercise-induced hypoalgesia (EIH), as a non-pharmacological analgesic mechanism, demonstrates broad application 
prospects in chronic pain management. This review aims to systematically summarize the neurobiological mechanisms, clinical evidence, and 
practical application strategies of EIH. 
Methods: This review synthesizes current evidence on EIH mechanisms across central, peripheral, and psychosocial domains, and examines 
clinical findings in patients with chronic pain conditions, including low back pain, osteoarthritis, chronic neck pain, and fibromyalgia. 
Results: EIH involves coordinated activation of descending pain inhibitory pathways, release of endogenous opioids and monoaminergic 
neurotransmitters, peripheral immune modulation through myokine secretion, and psychosocial factors including expectancy, pain catastrophizing, 
and kinesiophobia. In chronic pain patients, structured exercise interventions demonstrate analgesic effects, though responses exhibit significant 
disease-specificity and individual variability. Notably, patients with central sensitization syndromes may exhibit attenuated or paradoxical 
hyperalgesic responses to exercise. 
Conclusions: EIH is a multidimensional phenomenon integrating physiological and psychological mechanisms. Clinical application requires 
individualized exercise prescription encompassing modality, intensity, duration, and frequency, combined with multimodal integration and patient 
stratification based on pain phenotype and endogenous pain modulation capacity. Future research should prioritize development of predictive 
biomarkers for EIH, longitudinal outcome studies, and mechanistic investigations in refractory pain populations to advance precision exercise-
based pain management. 
Perspective: This review synthesizes neurophysiological and psychological mechanisms underlying exercise-induced hypoalgesia and its 
clinical applications in chronic pain management. Understanding how exercise modulates pain through central and peripheral pathways can 
guide clinicians in designing personalized, evidence-based exercise interventions to optimize analgesic outcomes while minimizing risks of 
exercise-induced hyperalgesia in vulnerable populations.
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INTRODUCTION  

Chronic pain represents a complex and persistent health 
problem that profoundly impacts patients' quality of life, physical 
function, and social productivity. Global epidemiological data 
indicate that the prevalence of chronic pain exceeds 20% in 
the adult population, with primary etiologies encompassing 
musculoskeletal disorders, neuropathic pain syndromes, 
and widespread pain disorders[1]. However, chronic pain 
management continues to face substantial challenges. 
Pharmacological treatments, particularly opioid medications, 
demonstrate significant limitations in long-term efficacy, 
tolerability, and safety, accompanied by risks of dependence 
and abuse[2]. Consequently, non-pharmacological treatment 
strategies have garnered increasing attention, with exercise 
interventions recognized as a promising therapeutic 
approach due to their high accessibility, minimal side effects, 
and capacity to deliver multidimensional health benefits[3].
Exercise-induced hypoalgesia (EIH) refers to the phenomenon 
of acute reduction in pain perception following a single bout 
of exercise. This phenomenon was first described in the 
1970s in aerobic exercise studies with healthy populations 
and has since been reported across diverse exercise 
types, intensities, and populations[4]. Recent research has 
increasingly recognized that EIH is not merely a transient post-
exercise analgesic response but may also promote long-term 
adaptation of endogenous analgesic mechanisms through 
repeated induction via structured exercise programs, thereby 
exerting sustained effects in chronic pain management[5, 6].
However, EIH manifestations exhibit significant variability 
across populations. In healthy individuals, EIH responses are 
stable and robust; conversely, in chronic pain populations, 
particularly in conditions characterized by central sensitization, 
EIH responses demonstrate greater fluctuation, with some 
patients even exhibiting exercise-induced hyperalgesia and 
short-term symptom exacerbation[7, 8]. This phenomenon 
suggests that clinical exercise prescription should carefully 
consider dose-response relationships and exercise 
modalities, adopt individualized intervention strategies, and 
address psychological modulatory factors such as emotion, 
expectancy, and catastrophizing to minimize risks of symptom 
aggravation and enhance adherence and efficacy.
Furthermore, existing research exhibits methodological 
limitations: heterogeneity across studies in exercise protocols, 
pain assessment methods, and participant characteristics 
compromises result comparability; most trials employ small 
sample sizes, and studies examining long-term persistence of 
EIH effects remain limited; mechanistic research predominantly 
involves healthy populations, necessitating cautious 
interpretation when extrapolating to chronic pain patients.
In summary, this review aims to systematically summarize 
recent advances in the neurobiological mechanisms, clinical 

evidence, and practical implications of EIH in chronic pain 
management, and to explore current research limitations 
and future directions, with the goal of advancing EIH toward 
mechanism-interpretable, prescription-executable, evidence-
based pain management strategies.

2. PHYSIOLOGICAL AND PSYCHOLOGICAL
MECHANISMS OF EXERCISE-INDUCED HYPOALGESIA

2.1 Central Nervous System Regulatory Mechanisms
One of the core mechanisms underlying exercise-induced 
hypoalgesia (EIH) is the descending pain inhibitory action 
of the central nervous system. The descending inhibitory 
pathway comprises a multi-level structure consisting of the 
periaqueductal gray (PAG), rostral ventromedial medulla 
(RVM), and spinal dorsal horn (DH), constituting an important 
defensive system for modulating nociceptive signals[9]. 
During acute exercise, the PAG receives multimodal inputs 
from motor cortex, limbic system, and brainstem, and drives 
inhibitory interneurons in the spinal dorsal horn via the 
RVM, reducing afferent signals from Aδ and C fibers, thereby 
elevating pain threshold[10]. During this process, release of 
monoaminergic neurotransmitters such as noradrenaline 
(NA) and serotonin (5-HT) is significantly enhanced, executing 
analgesic functions through α2-adrenergic receptors and 
5-HT1/5-HT3 receptors, respectively[11]. Additionally, exercise 
activates the endogenous opioid system, including multiple 
peptides such as β-endorphin, enkephalins, and dynorphins. 
These molecules directly bind to μ, δ, and κ opioid receptors 
in the spinal cord and brain, inhibiting transmission of pain 
signals[4]. Studies employing opioid receptor antagonists to 
block the central opioid system have observed significant 
attenuation of exercise-related pain threshold elevation, 
further confirming the critical role of opioidergic pathways in 
central analgesia[12].
Neuroimaging studies provide direct evidence for the 
aforementioned central mechanisms. Functional magnetic 
resonance imaging (fMRI) studies demonstrate that 
exercise induces enhanced activity in the PAG, RVM, and 
anterior cingulate cortex (ACC), with significant elevation of 
functional connectivity associated with pain inhibition[13]. 
Concurrently, key nodes of pain pathways such as the insula 
and primary somatosensory cortex (S1) exhibit decreased 
activity following exercise, suggesting that pain signals are 
reweighted and inhibited at the central level[14]. Resting-
state functional connectivity analysis further reveals 
increased connectivity between the PAG and prefrontal 
cortex post-exercise, potentially reflecting enhanced cognitive 
modulation of pain experience by the prefrontal cortex under 
exercise induction[15]. Furthermore, brain chemical imaging 
techniques (such as magnetic resonance spectroscopy, 
MRS) have confirmed that post-exercise changes in the ratio 

Page - 2Open Access, Volume 15 , 2026



Songtao Wang, Ph.D Directive Publications

of glutamate to γ-aminobutyric acid (GABA) in the brain 
demonstrate significant correlation with pain inhibitory 
effects[16]. This multimodal evidence collectively reveals the 
central basis of EIH: through activation of descending pain 
inhibitory systems, modulation of neurotransmitter release, 
and enhancement of functional connectivity in pain-related 
brain regions, exercise can significantly reshape central pain 
processing networks within a short timeframe, achieving 
analgesic effects.

2.2 Peripheral Mechanisms and Immune Modulation
Beyond the action of central descending analgesic systems, 
EIH also relies on synergistic participation of peripheral 
mechanisms, particularly metabolic and immune responses 
generated during skeletal muscle contraction, which can 
directly or indirectly reduce peripheral nociceptor sensitivity.
Skeletal muscle releases various myokines during exercise, 
including interleukin-6 (IL-6), brain-derived neurotrophic 
factor (BDNF), and lactate[17]. IL-6 exhibits acute elevation 
post-exercise, primarily mediating anti-inflammatory rather 
than pro-inflammatory responses by suppressing expression 
of pro-inflammatory cytokines such as tumor necrosis 
factor-α (TNF-α) and interleukin-1β (IL-1β)[18]. Concurrently, 
BDNF modulates nociception at multiple sites in the 
periphery and spinal cord through TrkB-mediated PLCγ/PI3K/
MAPK pathways, capable of both pro-nociceptive and anti-
nociceptive actions, with the latter predominating within the 
overall exercise-induced network to promote pain inhibition 
and tissue repair[19]. Additionally, muscle activity significantly 
increases local and systemic blood flow, facilitating clearance 
of metabolic products such as lactate, prostaglandins, ATP, 
and acidic ions. Accumulation of these products in muscle 
or joint tissues can persistently stimulate nociceptors and 
provoke pain[20]. Therefore, the immediate peripheral effects 
of exercise include improved tissue oxygenation, optimized 
metabolic environment, and reduced inflammatory sources 
through myokine-mediated immune regulation, thereby 
attenuating peripheral sensitization.
Immune modulation occupies an important position in 
the peripheral mechanisms of EIH. Chronic pain patients 
commonly exhibit low-grade systemic inflammatory states, 
which not only maintain peripheral sensitization but also 
further promote central sensitization through increased 
nociceptive input[21]. Exercise intervention, particularly 
moderate-intensity aerobic training, can suppress monocyte 
release of pro-inflammatory cytokines (such as TNF-α and 
IL-1β) while elevating levels of anti-inflammatory cytokines 
(such as IL-10)[18]. This pro-anti-inflammatory immune shift 
can downregulate nociceptor firing frequency and reduce 
the inflammatory environment in local tissues, thereby 
attenuating generation of pain signals[22]. Furthermore, 
exercise can influence peripheral nerve ion channel function, 

such as reducing expression of TRPV1 receptors and Nav1.8 
sodium channels, which are highly associated with peripheral 
sensitization[23].
Exercise can also synergistically improve circulation and 
immune homeostasis through remodeling of autonomic 
nervous activity. On one hand, regular aerobic training 
attenuates noradrenaline-mediated vasoconstriction 
responses in active muscles, thereby enhancing local 
perfusion and optimizing peripheral circulation[24]; on the 
other hand, exercise-induced adrenaline regulates immune 
cell mobilization and activation states through β-receptors, 
promoting anti-inflammatory phenotype and functional 
remodeling[25], thereby improving systemic and local 
inflammatory microenvironments.
In summary, peripheral metabolic improvement and immune 
modulation not only serve as important complements to 
central mechanisms but also provide crucial biological 
foundations for individualized application of EIH in chronic 
pain patients.

2.3 Psychosocial Mechanisms
The analgesic magnitude of EIH depends not only on 
central and peripheral physiological mechanisms but is also 
significantly modulated by psychological and social factors. 
Pain is a complex experience influenced by cognition, 
emotion, and expectancy; psychosocial variables can not only 
alter baseline levels of pain perception but also influence 
individual response patterns to exercise stimuli.
Exercise expectancy exerts an important amplification effect 
in EIH, with mechanisms closely related to placebo-like 
responses. Eippert et al.[26] demonstrated using functional 
imaging and naloxone blockade experiments that positive 
expectancy can activate the endogenous opioid system and 
promote coordinated activation of descending pain inhibitory 
pathways such as PAG and RVM, thereby significantly reducing 
pain perception. This psychological-neural interactive effect 
suggests that EIH analgesic intensity depends not only on 
physiological mechanisms but is also modulated by cognitive 
and emotional states[27]. Therefore, appropriately guiding 
and optimizing patient expectancy when designing exercise 
programs may help enhance intervention efficacy.
Pain catastrophizing represents an important negative 
psychological factor influencing EIH, referring to excessive 
threat-based interpretation and attentional bias toward pain. 
Catastrophizing influences pain outcomes through multiple 
pathways: on one hand, it enhances pain-related fear and 
negative emotions, promoting avoidance behaviors and 
activity limitation, thereby aggravating functional disability; 
on the other hand, it is associated with physiological 
responses such as sympathetic arousal, muscle tension, and 
inflammation, potentially weakening endogenous descending 
inhibition and thereby maintaining pain chronification 
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processes[28, 29], making it more difficult to produce 
analgesic responses after exercise.
Kinesiophobia also represents an important psychological 
barrier limiting EIH effects. Driven by pain-related fear, chronic 
pain patients often excessively worry that exercise may 
cause injury or pain exacerbation, thereby actively reducing 
physical activity and exercise intensity[30]. This exercise 
avoidance behavior not only leads to physical deconditioning 
but also results in insufficient exercise stimulation to trigger 
effective EIH responses, forming a vicious cycle of "pain-
fear-avoidance." Conversely, higher self-efficacy is not only 
associated with stronger pain tolerance and lower functional 
limitations but can also promote exercise confidence and 
adherence[31]. By maintaining adequate exercise volume and 
intensity, self-efficacy facilitates full activation of peripheral 
and central analgesic mechanisms, thereby enhancing EIH 
effects.
Conditioned pain modulation (CPM) is a commonly used 
paradigm for assessing individual endogenous pain inhibitory 
capacity. Research indicates that the magnitude of CPM 
inhibition correlates to some extent with EIH response 
patterns, with individuals exhibiting stronger CPM effects 
often also demonstrating more pronounced EIH[32]. 
However, this correlation is not entirely consistent, as the two 
differ in physiological mechanisms, individual variability, and 
effect duration[33]. Some chronic pain patients exhibit normal 
CPM responses but markedly insufficient post-exercise EIH 
responses, suggesting that EIH may involve psychological-
cognitive components distinct from classical CPM.
Attentional modulation plays an important role in exercise-
induced analgesia. When individuals shift attention from 
pain sensations to the exercise task itself during exercise, 
excessive activation of pain-related brain regions (such as the 
insula and ACC) is significantly attenuated, while prefrontal 
cortex regulatory function over pain emotion is enhanced. 
This process not only weakens pain perception and emotional 
responses but can also strengthen endogenous pain inhibitory 
mechanisms through activation of descending analgesic 
networks[34]. Additionally, emotional state represents an 
important factor influencing EIH, with positive emotions 
(such as pleasure and satisfaction) commonly associated 
with enhanced analgesic responses, while negative emotions 
such as anxiety and depression weaken EIH effects[15]. As an 
important variable modulating psychological mechanisms, 
social support can enhance patients' exercise motivation and 
persistence, thereby indirectly amplifying EIH effects[35].
In summary, psychosocial mechanisms can both directly 
influence EIH occurrence through modulation of central 
pain networks and determine analgesic response magnitude 
through shaping exercise behavioral patterns. Their role is 
particularly important in individualized exercise management 
of chronic pain patients.

3. DOSE-RESPONSE RELATIONSHIPS OF EXERCISE-
INDUCED HYPOALGESIA

3.1 Exercise Modality
Different exercise modalities exhibit significant variations 
in their capacity to induce EIH. Aerobic exercise, through 
sustained muscle contraction and cardiopulmonary system 
loading, promotes release of endogenous opioids and 
monoaminergic neurotransmitters, thereby enhancing 
inhibitory effects of the PAG-RVM pathway[36]. Resistance 
exercise produces both central and peripheral analgesic 
effects through metabolic stimulation and myokine secretion 
generated by localized muscle contraction[36]. In comparison, 
high-intensity interval training (HIIT), due to its intense 
metabolic load and acute stress response, may produce more 
transient but higher-peak EIH, suitable for selected individuals 
with good tolerance[37]. On the other hand, low-intensity 
activities such as yoga and Tai Chi demonstrate relatively 
weaker EIH effects, with analgesic mechanisms primarily 
dependent on psychological regulation and optimization of 
autonomic nervous balance; however, they possess unique 
value in improving psychological status and enhancing 
exercise adherence in chronic pain patients[38]. Furthermore, 
exercise modalities exhibit differential EIH induction efficacy 
across chronic pain subtypes, as detailed in Section 4.

3.2 Exercise Intensity
Exercise intensity represents a critical dose factor influencing 
EIH magnitude. Moderate to moderately high-intensity aerobic 
exercise (60–75% VO2max or 60–75% maximum heart rate) has 
been consistently demonstrated by substantial research to 
reliably induce significant EIH, whereas low-intensity exercise 
(<50% maximum heart rate) often fails to achieve significant 
analgesic effects[4].High-intensity resistance training involving 
large muscle groups is superior to small muscle group 
training in inducing analgesia, potentially related to greater 
β-endorphin release from the pituitary stimulated by large 
muscle contraction, subsequently activating descending pain 
inhibitory pathways[39]. Excessively low intensity often fails 
to reach the intensity/duration threshold required to induce 
EIH[40], while excessively high intensity (particularly involving 
substantial eccentric components or novel, high-load training) 
readily triggers post-exercise muscle damage and delayed-
onset muscle soreness (DOMS), with short-term increases in 
pain sensitivity, termed exercise-induced hyperalgesia[41]. 
This phenomenon is particularly prominent in chronic pain 
patients, especially in conditions characterized by central 
sensitization, where some high-load or rapidly progressive 
protocols may lead to short-term symptom exacerbation, 
suggesting that intensity prescription should adopt cautious, 
progressive strategies. Additionally, individual psychological 
status can significantly modulate adaptation and response 
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to intensity. Therefore, exercise intensity prescription should 
integrate both physiological and psychological perspectives, 
with individualized adjustments based on patients' baseline 
function, pain sensitivity, and psychological characteristics, 
to adequately activate analgesic mechanisms while avoiding 
risks of hyperalgesia[42].

3.3 Duration of EIH Effects
As an acute response, the analgesic effect of EIH is influenced 
by exercise modality, intensity, and individual differences, 
typically manifesting and gradually dissipating within minutes 
to hours following exercise cessation[43]. Aerobic exercise 
typically produces analgesic effects immediately post-exercise, 
gradually diminishing over tens of minutes to several hours; 
the analgesic effect of resistance training sometimes appears 
with a delay of several minutes and demonstrates relatively 
shorter duration[5];high-intensity interval training (HIIT),due 
to its brief but intense metabolic and nervous system loading, 
can elicit more pronounced analgesic responses in some 
healthy populations[37]. The duration of EIH in chronic pain 
patients is often shorter than in healthy individuals and is 
readily influenced by psychological factors[7]. Furthermore, 
delayed-onset muscle soreness (DOMS) may in some 
circumstances mask or attenuate EIH effects, particularly 
following high-intensity or novel exercise[41].Notably,
 repeated structured exercise training programs can enhance 
the persistence and magnitude of EIH responses through 
long-term plasticity of central analgesic pathways, thereby 
producing cumulative analgesic effects on chronic pain[44].
In summary, clarifying the influence patterns of different 
exercise modalities and intensities on EIH, as well as the 
dynamic persistence characteristics of analgesic effects, is 
crucial for optimizing exercise prescriptions for chronic pain 
patients and enhancing clinical efficacy of exercise therapy. 
Future research further integrating physiological biomarkers 
and psychological modulatory factors holds promise for 
advancing individualized precision exercise treatment.

4. CLINICAL EVIDENCE FOR EXERCISE-INDUCED
HYPOALGESIA

In chronic pain populations, EIH responses demonstrate 
greater complexity and diversity, exhibiting pronounced 
disease-specificity and individual variability. Overall, 
structured exercise interventions can effectively alleviate 
symptoms and improve daily function across multiple chronic 
pain conditions. Evidence-based data support selection of 
individualized exercise programs based on patient status to 
relieve pain, improve function, and reduce recurrence risk.

4.1 Chronic Low Back Pain
Substantial evidence from randomized controlled trials and 

prospective studies demonstrates that structured exercise 
interventions can improve pain, function, and quality of life 
in patients with chronic or recurrent low back pain, though 
analgesic magnitude and persistence vary across exercise 
modalities. Behavioral therapy combined with exercise can 
improve psychological and functional status in chronic low 
back pain patients across multiple dimensions[45]. Motor 
control training focused on lumbo-pelvic deep muscle 
activation demonstrates medium- to long-term effects in 
reducing pain and functional disability[46]. Graded aerobic 
and functional training can improve symptoms in recurrent 
low back pain at 6–36 month follow-up[47]. Spinal stabilization 
training tailored to pain grade and balance differences can 
enhance postural control and function[48]. Multiple trials 
have examined the value of Pilates in chronic low back pain 
management, with results showing it can alleviate pain and 
improve function and quality of life[49-51]. Strength training 
studies indicate that lumbar strengthening can simultaneously 
improve physiological and psychological indicators[52]. Other 
types of rehabilitative exercise also demonstrate efficacy, 
such as Mensendieck somatocognitive therapy reducing 
symptoms of recurrent low back pain at 12 months[53].

4.2 Osteoarthritis
Substantial high-quality randomized controlled trials 
consistently confirm that structured exercise interventions 
can significantly alleviate pain, improve function and quality 
of life, and demonstrate good safety in patients with knee 
or hip osteoarthritis. Different forms of aerobic activity, 
including group cycling[54], walking[55], and Baduanjin[56], 
can all reduce pain-related disability levels. Aquatic exercise 
demonstrates stable analgesic and functional improvement 
effects across multiple trials[57-59], and improves flexibility, 
muscle strength, and cardiopulmonary function[60, 61]. 
Traditional and mind-body integrated exercises such as 
Tai Chi[58, 62] also demonstrate effective pain reduction 
and physical function improvement. Strength training and 
proprioceptive training similarly play important roles in knee 
osteoarthritis analgesia and functional improvement[63, 64], 
with some studies showing combined effects superior to 
single interventions.
The landmark FAST study demonstrated that both aerobic 
and resistance training were superior to health education 
for improving knee osteoarthritis pain and function[65]. 
Additionally, exercise therapy for hip osteoarthritis 
has demonstrated significant efficacy across multiple 
studies[66-69].

4.3 Chronic Neck Pain
Multiple randomized controlled trials confirm that 
structured exercise interventions have significant analgesic 
and functional recovery effects for chronic neck pain with 
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neurogenic components. Functional postural training 
targeting deep cervical flexors can improve neuromuscular 
coordination and cervical stability, thereby reducing pain 
originating from cervical nerve irritation[70]; therapeutic neck 
exercise combined with sleep support can reduce pain and 
improve functional mobility[71]; Viljanen et al.[72] compared 
dynamic muscle training, relaxation training, and ordinary 
daily activities for chronic neck pain patients, with results 
showing no significant differences in neck pain severity 
among the three groups, but patients receiving dynamic 
muscle training and relaxation training demonstrated greater 
improvements in cervical rotation and lateral flexion range of 
motion. Additionally, qigong and conventional exercise can 
both stably alleviate chronic neck pain and improve quality 
of life across different populations[73, 74], while group neck 
gymnastics can significantly reduce neck pain incidence in 
workplace settings[75]. This evidence collectively supports 
the important clinical value of regular, targeted exercise 
training in improving neurogenic pain symptoms, enhancing 
cervical function, and improving quality of life.

4.4 Fibromyalgia Syndrome
Randomized controlled trials and prospective studies 
consistently report that in fibromyalgia syndrome patients, 
structured exercise interventions (including aerobic, 
strength, and aquatic exercise) can typically reduce pain 
intensity and improve function, quality of life, and certain 
cognitive and neuromuscular indicators. Land-based 
aerobic training, whether employing short segmented or 
longer duration protocols, can produce beneficial changes 
in symptoms and physical fitness[76]; combining exercise 
with biofeedback/relaxation can further improve symptom 
and psychological outcomes[77]. Studies comparing aerobic 
exercise with paroxetine suggest clinical potential of non-
pharmacological exercise programs in pain management[78]. 
Multiple randomized controlled studies of aquatic/warm 
water exercise repeatedly demonstrate pain reduction 
accompanied by improvements in lower extremity muscle 
strength, quality of life, and even cognitive function[79-81]. 
Additionally, strength training can induce significant 
neuromuscular functional adaptations, further confirming 
that fibromyalgia syndrome pathological mechanisms are 
primarily central rather than peripheral[82]. Synthesizing 
the above evidence, it is recommended to incorporate 
individualized, progressive aerobic, strength, and/or aquatic 
exercise into multidisciplinary management of fibromyalgia, 
with the goal of improving function and quality of life while 
reducing pain.
The above clinical evidence demonstrates that while EIH 
exhibits disease-specificity and individual variability in 
chronic pain patients, multiple forms of structured exercise 
interventions have been proven to produce analgesic 

effects and improve function across different chronic pain 
populations, providing a solid evidence-based foundation 
for exercise therapy as a core component of chronic pain 
management.

5. CLINICAL APPLICATION AND PRACTICE
RECOMMENDATIONS

Exercise prescription development should be based on 
existing research evidence, fully considering core elements 
such as exercise type, frequency, duration, and intensity. 
Regarding exercise type, aerobic exercise (such as running, 
cycling, swimming) has been confirmed by substantial research 
to stably induce short-term analgesic effects[83]; resistance 
training can also produce significant analgesic effects under 
specific intensities with large muscle group participation[84]; 
mind-body integrated exercises (such as yoga, Tai Chi) may 
simultaneously act on psychological regulation and somatic 
analgesic systems[38]. Regarding exercise frequency, it is 
recommended that chronic pain patients initially perform 
moderate-intensity exercise 2–3 times per week, gradually 
increasing to 4–5 times per week, with dynamic adjustments 
based on patient adaptation responses[44]. Regarding 
duration, moderate- to high-intensity exercise generally can 
stably induce EIH within the 20–45 minute range[85]. Exercise 
intensity selection should be based on patients' current 
physical fitness and pain tolerance, typically recommended 
to start from 50–60% VO2max or equivalent to 60–70% of 
maximum heart rate, gradually increasing load[86].
Combining exercise with other intervention measures 
represents an important strategy for enhancing EIH clinical 
efficacy. Multimodal interventions can achieve mechanistic 
complementarity; research demonstrates that adding manual 
therapy, breathing training, or mindfulness meditation to 
exercise training can further modulate pain-related central 
networks and enhance analgesic magnitude[87, 88]. These 
combination interventions are particularly suitable for 
chronic pain patients, as single exercise modalities sometimes 
are insufficient to overcome the dual barriers of central 
sensitization and psychological factors.
In summary, clinical application of EIH is not merely "prescribing 
exercise to patients" but requires multidimensional strategies 
based on scientific evidence, psychological-behavioral 
interventions, and individualized assessment. Through 
rational design of exercise prescriptions, combination of 
multimodal intervention approaches, and full consideration 
of patient differential responses, EIH holds promise to 
become a predictable, patronizable, and sustainable 
non-pharmacological analgesic core tool in chronic pain 
management.
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6. Limitations and Future Research Directions

Existing research exhibits limitations including large 
sample heterogeneity, insufficient long-term follow-up, 
and mechanistic studies predominantly based on healthy 
populations. Future research needs to conduct large-
sample prospective studies evaluating long-term efficacy 
of EIH, integrate multimodal biomarkers (neuroimaging, 
inflammatory markers, psychological scales) to construct 
predictive models, deeply elucidate pathophysiological 
mechanisms of EIH failure in central sensitization patients, 
and explore clinical value of novel exercise modalities (such 
as virtual reality training), to advance EIH toward precision, 
executable, evidence-based pain management strategies.
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