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/ Abstract \

Background: Chronic pain affects over 20% of adults worldwide, and traditional pharmacological treatments have limitations in efficacy and
safety concerns. Exercise-induced hypoalgesia (EIH), as a non-pharmacological analgesic mechanism, demonstrates broad application
prospects in chronic pain management. This review aims to systematically summarize the neurobiological mechanisms, clinical evidence, and
practical application strategies of EIH.

Methods: This review synthesizes current evidence on EIH mechanisms across central, peripheral, and psychosocial domains, and examines
clinical findings in patients with chronic pain conditions, including low back pain, osteoarthritis, chronic neck pain, and fibromyalgia.

Results: EIH involves coordinated activation of descending pain inhibitory pathways, release of endogenous opioids and monoaminergic
neurotransmitters, peripheral immune modulation through myokine secretion, and psychosocial factors including expectancy, pain catastrophizing,
and kinesiophobia. In chronic pain patients, structured exercise interventions demonstrate analgesic effects, though responses exhibit significant
disease-specificity and individual variability. Notably, patients with central sensitization syndromes may exhibit attenuated or paradoxical
hyperalgesic responses to exercise.

Conclusions: EIH is a multidimensional phenomenon integrating physiological and psychological mechanisms. Clinical application requires
individualized exercise prescription encompassing modality, intensity, duration, and frequency, combined with multimodal integration and patient
stratification based on pain phenotype and endogenous pain modulation capacity. Future research should prioritize development of predictive
biomarkers for EIH, longitudinal outcome studies, and mechanistic investigations in refractory pain populations to advance precision exercise-
based pain management.

Perspective: This review synthesizes neurophysiological and psychological mechanisms underlying exercise-induced hypoalgesia and its
clinical applications in chronic pain management. Understanding how exercise modulates pain through central and peripheral pathways can
guide clinicians in designing personalized, evidence-based exercise interventions to optimize analgesic outcomes while minimizing risks of
exercise-induced hyperalgesia in vulnerable populations.
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INTRODUCTION

Chronic pain represents a complex and persistent health
problemthatprofoundlyimpactspatients'qualityoflife, physical
function, and social productivity. Global epidemiological data
indicate that the prevalence of chronic pain exceeds 20% in
the adult population, with primary etiologies encompassing
musculoskeletal disorders, neuropathic pain syndromes,
and widespread pain disorders[1]. However, chronic pain
management continues to face substantial challenges.
Pharmacological treatments, particularly opioid medications,
demonstrate significant limitations in long-term efficacy,
tolerability, and safety, accompanied by risks of dependence
and abuse[2]. Consequently, non-pharmacological treatment
strategies have garnered increasing attention, with exercise
interventions promising therapeutic
approach due to their high accessibility, minimal side effects,
and capacity to deliver multidimensional health benefits[3].

Exercise-induced hypoalgesia (EIH) refers to the phenomenon
of acute reduction in pain perception following a single bout
of exercise. This phenomenon was first described in the
1970s in aerobic exercise studies with healthy populations
and has since been reported across diverse exercise
types, intensities, and populations[4]. Recent research has
increasingly recognized that EIH is not merely a transient post-
exercise analgesic response but may also promote long-term
adaptation of endogenous analgesic mechanisms through
repeated induction via structured exercise programs, thereby
exerting sustained effects in chronic pain management[5, 6].
However, EIH manifestations exhibit significant variability
across populations. In healthy individuals, EIH responses are
stable and robust; conversely, in chronic pain populations,
particularlyin conditions characterized by central sensitization,
EIH responses demonstrate greater fluctuation, with some
patients even exhibiting exercise-induced hyperalgesia and
short-term symptom exacerbation[7, 8]. This phenomenon
suggests that clinical exercise prescription should carefully
consider

recognized as a

dose-response and exercise
modalities, adopt individualized intervention strategies, and
address psychological modulatory factors such as emotion,
expectancy, and catastrophizing to minimize risks of symptom
aggravation and enhance adherence and efficacy.

Furthermore, research exhibits methodological
limitations: heterogeneity across studies in exercise protocols,
pain assessment methods, and participant characteristics

compromises result comparability; most trials employ small

relationships

existing

sample sizes, and studies examining long-term persistence of
EIHeffectsremainlimited; mechanisticresearchpredominantly
healthy populations, necessitating
interpretation when extrapolating to chronic pain patients.
In summary, this review aims to systematically summarize
recent advances in the neurobiological mechanisms, clinical

involves cautious

evidence, and practical implications of EIH in chronic pain
management, and to explore current research limitations
and future directions, with the goal of advancing EIH toward
mechanism-interpretable, prescription-executable, evidence-
based pain management strategies.

2. PHYSIOLOGICAL AND PSYCHOLOGICAL
MECHANISMS OF EXERCISE-INDUCED HYPOALGESIA

2.1 Central Nervous System Regulatory Mechanisms

One of the core mechanisms underlying exercise-induced
hypoalgesia (EIH) is the descending pain inhibitory action
of the central nervous system. The descending inhibitory
pathway comprises a multi-level structure consisting of the
periaqueductal gray (PAG), rostral ventromedial medulla
(RVM), and spinal dorsal horn (DH), constituting an important
defensive system for modulating nociceptive signals[9].
During acute exercise, the PAG receives multimodal inputs
from motor cortex, limbic system, and brainstem, and drives
inhibitory interneurons in the spinal dorsal horn via the
RVM, reducing afferent signals from A6 and C fibers, thereby
elevating pain threshold[10]. During this process, release of
monoaminergic neurotransmitters such as noradrenaline
(NA) and serotonin (5-HT) is significantly enhanced, executing
analgesic functions through a2-adrenergic receptors and
5-HT1/5-HT3 receptors, respectively[11]. Additionally, exercise
activates the endogenous opioid system, including multiple
peptides such as B-endorphin, enkephalins, and dynorphins.
These molecules directly bind to p, &, and k opioid receptors
in the spinal cord and brain, inhibiting transmission of pain
signals[4]. Studies employing opioid receptor antagonists to
block the central opioid system have observed significant
attenuation of exercise-related pain threshold elevation,
further confirming the critical role of opioidergic pathways in
central analgesia[12].

Neuroimaging studies provide direct evidence for the
aforementioned central mechanisms. Functional magnetic
imaging (fMRI) studies demonstrate that
exercise induces enhanced activity in the PAG, RVM, and
anterior cingulate cortex (ACC), with significant elevation of

resonance

functional connectivity associated with pain inhibition[13].
Concurrently, key nodes of pain pathways such as the insula
and primary somatosensory cortex (S1) exhibit decreased
activity following exercise, suggesting that pain signals are
reweighted and inhibited at the central level[14]. Resting-
state functional connectivity analysis further reveals
increased connectivity between the PAG and prefrontal
cortex post-exercise, potentially reflecting enhanced cognitive
modulation of pain experience by the prefrontal cortex under
exercise induction[15]. Furthermore, brain chemical imaging
techniques (such as magnetic resonance spectroscopy,

MRS) have confirmed that post-exercise changes in the ratio
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of glutamate to y-aminobutyric acid (GABA) in the brain
demonstrate significant correlation with pain inhibitory
effects[16]. This multimodal evidence collectively reveals the
central basis of EIH: through activation of descending pain
inhibitory systems, modulation of neurotransmitter release,
and enhancement of functional connectivity in pain-related
brain regions, exercise can significantly reshape central pain
processing networks within a short timeframe, achieving
analgesic effects.

2.2 Peripheral Mechanisms and Immune Modulation
Beyond the action of central descending analgesic systems,
EIH also relies on synergistic participation of peripheral
mechanisms, particularly metabolic and immune responses
generated during skeletal muscle contraction, which can
directly or indirectly reduce peripheral nociceptor sensitivity.
Skeletal muscle releases various myokines during exercise,
including interleukin-6 (IL-6), brain-derived neurotrophic
factor (BDNF), and lactate[17]. IL-6 exhibits acute elevation
post-exercise, primarily mediating anti-inflammatory rather
than pro-inflammatory responses by suppressing expression
of pro-inflammatory cytokines such as tumor necrosis
factor-a (TNF-a) and interleukin-18 (IL-1B)[18]. Concurrently,
BDNF modulates nociception at multiple sites in the
periphery and spinal cord through TrkB-mediated PLCy/PI3K/
MAPK pathways, capable of both pro-nociceptive and anti-
nociceptive actions, with the latter predominating within the
overall exercise-induced network to promote pain inhibition
and tissue repair[19]. Additionally, muscle activity significantly
increases local and systemic blood flow, facilitating clearance
of metabolic products such as lactate, prostaglandins, ATP,
and acidic ions. Accumulation of these products in muscle
or joint tissues can persistently stimulate nociceptors and
provoke pain[20]. Therefore, the immediate peripheral effects
of exercise include improved tissue oxygenation, optimized
metabolic environment, and reduced inflammatory sources
through myokine-mediated immune regulation, thereby
attenuating peripheral sensitization.

Immune modulation occupies an important position in
the peripheral mechanisms of EIH. Chronic pain patients
commonly exhibit low-grade systemic inflammatory states,
which not only maintain peripheral sensitization but also
further promote central sensitization through increased
input[21].
moderate-intensity aerobic training, can suppress monocyte
release of pro-inflammatory cytokines (such as TNF-a and
IL-1B) while elevating levels of anti-inflammatory cytokines

nociceptive Exercise intervention, particularly

(such as IL-10)[18]. This pro-anti-inflammatory immune shift
can downregulate nociceptor firing frequency and reduce
the inflammatory environment in local tissues, thereby
attenuating generation of pain signals[22]. Furthermore,
exercise can influence peripheral nerve ion channel function,

such as reducing expression of TRPV1 receptors and Nav1.8
sodium channels, which are highly associated with peripheral
sensitization[23].

Exercise can also synergistically improve circulation and
immune homeostasis through remodeling of autonomic
nervous activity. On one hand, regular aerobic training
vasoconstriction

attenuates noradrenaline-mediated

responses in active muscles, thereby enhancing local
perfusion and optimizing peripheral circulation[24]; on the
other hand, exercise-induced adrenaline regulates immune
cell mobilization and activation states through B-receptors,
promoting anti-inflammatory phenotype and functional
remodeling[25], thereby

inflammatory microenvironments.

improving systemic and local
In summary, peripheral metabolicimprovement and immune
modulation not only serve as important complements to
central mechanisms but also provide crucial biological
foundations for individualized application of EIH in chronic
pain patients.

2.3 Psychosocial Mechanisms

The analgesic magnitude of EIH depends not only on
central and peripheral physiological mechanisms but is also
significantly modulated by psychological and social factors.
Pain is a complex experience influenced by cognition,
emotion, and expectancy; psychosocial variables can not only
alter baseline levels of pain perception but also influence
individual response patterns to exercise stimuli.

Exercise expectancy exerts an important amplification effect
in EIH, with mechanisms closely related to placebo-like
responses. Eippert et al.[26] demonstrated using functional
imaging and naloxone blockade experiments that positive
expectancy can activate the endogenous opioid system and
promote coordinated activation of descending pain inhibitory
pathways such as PAG and RVM, thereby significantly reducing
pain perception. This psychological-neural interactive effect
suggests that EIH analgesic intensity depends not only on
physiological mechanisms but is also modulated by cognitive
and emotional states[27]. Therefore, appropriately guiding
and optimizing patient expectancy when designing exercise
programs may help enhance intervention efficacy.

Pain catastrophizing represents an
psychological factor influencing EIH, referring to excessive
threat-based interpretation and attentional bias toward pain.

important negative

Catastrophizing influences pain outcomes through multiple
pathways: on one hand, it enhances pain-related fear and
negative emotions, promoting avoidance behaviors and
activity limitation, thereby aggravating functional disability;
on the other hand, it is associated with physiological
responses such as sympathetic arousal, muscle tension, and
inflammation, potentially weakening endogenous descending
inhibition and thereby maintaining pain chronification
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processes[28, 29], making it more difficult to produce
analgesic responses after exercise.

Kinesiophobia also represents an important psychological
barrier limiting EIH effects. Driven by pain-related fear, chronic
pain patients often excessively worry that exercise may
cause injury or pain exacerbation, thereby actively reducing
physical activity and exercise intensity[30]. This exercise
avoidance behavior not only leads to physical deconditioning
but also results in insufficient exercise stimulation to trigger
effective EIH responses, forming a vicious cycle of "pain-
fear-avoidance." Conversely, higher self-efficacy is not only
associated with stronger pain tolerance and lower functional
limitations but can also promote exercise confidence and
adherence[31]. By maintaining adequate exercise volume and
intensity, self-efficacy facilitates full activation of peripheral
and central analgesic mechanisms, thereby enhancing EIH
effects.

Conditioned pain modulation (CPM) is a commonly used
paradigm for assessing individual endogenous pain inhibitory
capacity. Research indicates that the magnitude of CPM
inhibition correlates to some extent with EIH response
patterns, with individuals exhibiting stronger CPM effects
often also demonstrating more pronounced EIH[32].
However, this correlation is not entirely consistent, as the two
differ in physiological mechanisms, individual variability, and
effect duration[33]. Some chronic pain patients exhibit normal
CPM responses but markedly insufficient post-exercise EIH
responses, suggesting that EIH may involve psychological-
cognitive components distinct from classical CPM.
Attentional modulation plays an important role in exercise-
induced analgesia. When individuals shift attention from
pain sensations to the exercise task itself during exercise,
excessive activation of pain-related brain regions (such as the
insula and ACQ) is significantly attenuated, while prefrontal
cortex regulatory function over pain emotion is enhanced.
This process not only weakens pain perception and emotional
responses but can also strengthen endogenous pain inhibitory
mechanisms through activation of descending analgesic
networks[34]. Additionally, emotional state represents an
important factor influencing EIH, with positive emotions
(such as pleasure and satisfaction) commonly associated
with enhanced analgesic responses, while negative emotions
such as anxiety and depression weaken EIH effects[15]. As an
important variable modulating psychological mechanisms,
social support can enhance patients' exercise motivation and
persistence, thereby indirectly amplifying EIH effects[35].

In summary, psychosocial mechanisms can both directly
influence EIH occurrence through modulation of central
pain networks and determine analgesic response magnitude
through shaping exercise behavioral patterns. Their role is
particularly important in individualized exercise management
of chronic pain patients.

3. DOSE-RESPONSE RELATIONSHIPS OF EXERCISE-
INDUCED HYPOALGESIA

3.1 Exercise Modality

Different exercise modalities exhibit significant variations
in their capacity to induce EIH. Aerobic exercise, through
sustained muscle contraction and cardiopulmonary system
loading, promotes release of endogenous opioids and
monoaminergic neurotransmitters, thereby enhancing
inhibitory effects of the PAG-RVM pathway[36]. Resistance
exercise produces both central and peripheral analgesic
effects through metabolic stimulation and myokine secretion
generated by localized muscle contraction[36]. In comparison,
high-intensity interval training (HIIT), due to its intense
metabolic load and acute stress response, may produce more
transient but higher-peak EIH, suitable for selected individuals
with good tolerance[37]. On the other hand, low-intensity
activities such as yoga and Tai Chi demonstrate relatively
weaker EIH effects, with analgesic mechanisms primarily
dependent on psychological regulation and optimization of
autonomic nervous balance; however, they possess unique
value in improving psychological status and enhancing
exercise adherence in chronic pain patients[38]. Furthermore,
exercise modalities exhibit differential EIH induction efficacy
across chronic pain subtypes, as detailed in Section 4.

3.2 Exercise Intensity

Exercise intensity represents a critical dose factor influencing
EIH magnitude. Moderate to moderately high-intensity aerobic
exercise (60-75% VO,max or 60-75% maximum heart rate) has
been consistently demonstrated by substantial research to
reliably induce significant EIH, whereas low-intensity exercise
(<50% maximum heart rate) often fails to achieve significant
analgesic effects[4].High-intensity resistance training involving
large muscle groups is superior to small muscle group
training in inducing analgesia, potentially related to greater
B-endorphin release from the pituitary stimulated by large
muscle contraction, subsequently activating descending pain
inhibitory pathways[39]. Excessively low intensity often fails
to reach the intensity/duration threshold required to induce
EIH[40], while excessively high intensity (particularly involving
substantial eccentric components or novel, high-load training)
readily triggers post-exercise muscle damage and delayed-
onset muscle soreness (DOMS), with short-term increases in
pain sensitivity, termed exercise-induced hyperalgesia[41].
This phenomenon is particularly prominent in chronic pain
patients, especially in conditions characterized by central
sensitization, where some high-load or rapidly progressive
protocols may lead to short-term symptom exacerbation,
suggesting that intensity prescription should adopt cautious,
progressive strategies. Additionally, individual psychological
status can significantly modulate adaptation and response
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to intensity. Therefore, exercise intensity prescription should
integrate both physiological and psychological perspectives,
with individualized adjustments based on patients' baseline
function, pain sensitivity, and psychological characteristics,
to adequately activate analgesic mechanisms while avoiding
risks of hyperalgesia[42].

3.3 Duration of EIH Effects

As an acute response, the analgesic effect of EIH is influenced
by exercise modality, intensity, and individual differences,
typically manifesting and gradually dissipating within minutes
to hours following exercise cessation[43]. Aerobic exercise
typically produces analgesic effectsimmediately post-exercise,
gradually diminishing over tens of minutes to several hours;
the analgesic effect of resistance training sometimes appears
with a delay of several minutes and demonstrates relatively
shorter duration[5];high-intensity interval training (HIIT),due
to its brief but intense metabolic and nervous system loading,
can elicit more pronounced analgesic responses in some
healthy populations[37]. The duration of EIH in chronic pain
patients is often shorter than in healthy individuals and is
readily influenced by psychological factors[7]. Furthermore,
delayed-onset muscle soreness (DOMS) may in some
circumstances mask or attenuate EIH effects, particularly
following high-intensity or novel exercise[41].Notably,
repeated structured exercise training programs can enhance
the persistence and magnitude of EIH responses through
long-term plasticity of central analgesic pathways, thereby
producing cumulative analgesic effects on chronic pain[44].
In summary, clarifying the influence patterns of different
exercise modalities and intensities on EIH, as well as the
dynamic persistence characteristics of analgesic effects, is
crucial for optimizing exercise prescriptions for chronic pain
patients and enhancing clinical efficacy of exercise therapy.
Future research further integrating physiological biomarkers
and psychological modulatory factors holds promise for
advancing individualized precision exercise treatment.

4. CLINICAL EVIDENCE FOR EXERCISE-INDUCED
HYPOALGESIA

In chronic pain populations, EIH responses demonstrate
greater complexity and diversity, exhibiting pronounced
disease-specificity and individual variability. Overall,
structured exercise interventions can effectively alleviate
symptoms and improve daily function across multiple chronic
pain conditions. Evidence-based data support selection of
individualized exercise programs based on patient status to

relieve pain, improve function, and reduce recurrence risk.

4.1 Chronic Low Back Pain
Substantial evidence from randomized controlled trials and

prospective studies demonstrates that structured exercise
interventions can improve pain, function, and quality of life
in patients with chronic or recurrent low back pain, though
analgesic magnitude and persistence vary across exercise
modalities. Behavioral therapy combined with exercise can
improve psychological and functional status in chronic low
back pain patients across multiple dimensions[45]. Motor
control training focused on lumbo-pelvic deep muscle
activation demonstrates medium- to long-term effects in
reducing pain and functional disability[46]. Graded aerobic
and functional training can improve symptoms in recurrent
low back pain at 6-36 month follow-up[47]. Spinal stabilization
training tailored to pain grade and balance differences can
enhance postural control and function[48]. Multiple trials
have examined the value of Pilates in chronic low back pain
management, with results showing it can alleviate pain and
improve function and quality of life[49-51]. Strength training
studiesindicate thatlumbar strengthening can simultaneously
improve physiological and psychological indicators[52]. Other
types of rehabilitative exercise also demonstrate efficacy,
such as Mensendieck somatocognitive therapy reducing
symptoms of recurrent low back pain at 12 months[53].

4.2 Osteoarthritis
Substantial high-quality
consistently confirm that structured exercise interventions

randomized controlled trials
can significantly alleviate pain, improve function and quality
of life, and demonstrate good safety in patients with knee
or hip osteoarthritis. Different forms of aerobic activity,
including group cycling[54], walking[55], and Baduanjin[56],
can all reduce pain-related disability levels. Aquatic exercise
demonstrates stable analgesic and functional improvement
effects across multiple trials[57-59], and improves flexibility,
muscle strength, and cardiopulmonary function[60, 61].
Traditional and mind-body integrated exercises such as
Tai Chi[58, 62] also demonstrate effective pain reduction
and physical function improvement. Strength training and
proprioceptive training similarly play important roles in knee
osteoarthritis analgesia and functional improvement[63, 64],
with some studies showing combined effects superior to
single interventions.

The landmark FAST study demonstrated that both aerobic
and resistance training were superior to health education
for improving knee osteoarthritis pain and function[65].

Additionally, exercise therapy for hip osteoarthritis
has demonstrated significant efficacy across multiple
studies[66-69].

4.3 Chronic Neck Pain

Multiple randomized controlled trials confirm that

structured exercise interventions have significant analgesic
and functional recovery effects for chronic neck pain with
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neurogenic components. Functional postural training
targeting deep cervical flexors can improve neuromuscular
coordination and cervical stability, thereby reducing pain
originating from cervical nerve irritation[70]; therapeutic neck
exercise combined with sleep support can reduce pain and
improve functional mobility[71]; Viljanen et al.[72] compared
dynamic muscle training, relaxation training, and ordinary
daily activities for chronic neck pain patients, with results
showing no significant differences in neck pain severity
among the three groups, but patients receiving dynamic
muscle training and relaxation training demonstrated greater
improvements in cervical rotation and lateral flexion range of
motion. Additionally, gigong and conventional exercise can
both stably alleviate chronic neck pain and improve quality
of life across different populations[73, 74], while group neck
gymnastics can significantly reduce neck pain incidence in
workplace settings[75]. This evidence collectively supports
the important clinical value of regular, targeted exercise
training in improving neurogenic pain symptoms, enhancing
cervical function, and improving quality of life.

4.4 Fibromyalgia Syndrome
Randomized controlled trials and prospective studies
consistently report that in fibromyalgia syndrome patients,
(including  aerobic,

strength, and aquatic exercise) can typically reduce pain

structured exercise interventions
intensity and improve function, quality of life, and certain
Land-based

aerobic training, whether employing short segmented or

cognitive and neuromuscular indicators.
longer duration protocols, can produce beneficial changes
in symptoms and physical fitness[76]; combining exercise
with biofeedback/relaxation can further improve symptom
and psychological outcomes[77]. Studies comparing aerobic
exercise with paroxetine suggest clinical potential of non-
pharmacological exercise programs in pain management[78].
Multiple randomized controlled studies of aquatic/warm
water exercise repeatedly demonstrate pain

accompanied by improvements in lower extremity muscle

reduction

strength, quality of life, and even cognitive function[79-81].
Additionally, strength training significant
neuromuscular functional adaptations, further confirming

can induce
that fibromyalgia syndrome pathological mechanisms are
primarily central rather than peripheral[82]. Synthesizing
the above evidence, it is recommended to incorporate
individualized, progressive aerobic, strength, and/or aquatic
exercise into multidisciplinary management of fibromyalgia,
with the goal of improving function and quality of life while
reducing pain.

The above clinical evidence demonstrates that while EIH
exhibits disease-specificity and individual variability in
chronic pain patients, multiple forms of structured exercise
interventions have been proven to produce analgesic

effects and improve function across different chronic pain
populations, providing a solid evidence-based foundation
for exercise therapy as a core component of chronic pain
management.

5. CLINICAL APPLICATION AND PRACTICE
RECOMMENDATIONS

Exercise prescription development should be based on
existing research evidence, fully considering core elements
such as exercise type, frequency, duration, and intensity.
Regarding exercise type, aerobic exercise (such as running,
cycling, swimming) has been confirmed by substantial research
to stably induce short-term analgesic effects[83]; resistance
training can also produce significant analgesic effects under
specific intensities with large muscle group participation[84];
mind-body integrated exercises (such as yoga, Tai Chi) may
simultaneously act on psychological regulation and somatic
analgesic systems[38]. Regarding exercise frequency, it is
recommended that chronic pain patients initially perform
moderate-intensity exercise 2-3 times per week, gradually
increasing to 4-5 times per week, with dynamic adjustments
based on patient adaptation responses[44]. Regarding
duration, moderate- to high-intensity exercise generally can
stably induce EIH within the 20-45 minute range[85]. Exercise
intensity selection should be based on patients' current
physical fitness and pain tolerance, typically recommended
to start from 50-60% VO,max or equivalent to 60-70% of
maximum heart rate, gradually increasing load[86].

Combining exercise with other intervention measures
represents an important strategy for enhancing EIH clinical
efficacy. Multimodal interventions can achieve mechanistic
complementarity; research demonstrates that adding manual
therapy, breathing training, or mindfulness meditation to
exercise training can further modulate pain-related central
networks and enhance analgesic magnitude[87, 88]. These
interventions are particularly suitable for
chronic pain patients, as single exercise modalities sometimes

combination

are insufficient to overcome the dual barriers of central

sensitization and psychological factors.

Insummary, clinicalapplication ofEIHisnotmerely "prescribing

exercise to patients" but requires multidimensional strategies
evidence, psychological-behavioral

individualized assessment.

based on scientific

interventions, and Through
rational design of exercise prescriptions, combination of
multimodal intervention approaches, and full consideration
of patient differential responses, EIH holds promise to
predictable,
non-pharmacological analgesic core tool in chronic pain

management.

become a patronizable, and sustainable
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6. Limitations and Future Research Directions

Existing research exhibits limitations
sample heterogeneity,
and mechanistic studies predominantly based on healthy
populations. Future research needs to conduct large-

sample prospective studies evaluating long-term efficacy

including large

insufficient long-term follow-up,

of EIH, integrate multimodal biomarkers (neuroimaging,
inflammatory markers, psychological scales) to construct
predictive models, deeply elucidate pathophysiological
mechanisms of EIH failure in central sensitization patients,
and explore clinical value of novel exercise modalities (such
as virtual reality training), to advance EIH toward precision,
executable, evidence-based pain management strategies.
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