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ABSTRACT

All biological forms of life can be exposed to different levels 
of harmful chemicals that can cause various side effects. 
Toxicological experiments enable researchers to test these 
chemicals on rats to determine their major effects. Although 
optimal and acceptable dose levels have been investigated, 
researchers continue to strive to minimize the side effects 
and the chemical dosage. Farhat [2014] used a Bayesian 
approach to determine the Benchmark Dose Tolerable 
Region (BMDTR) for several additive outcomes with two 
chemicals. In this article, we use the tolerable region under 
the fitted dose-response model to propose a novel Bayesian 
criterion that determines the Bayesian optimal follow-up 
experimental design for the toxicology experiment. The data 
motivating this study was collected by Moser et al. [2005]. 

Keywords : Bayesianexperimentdesign; Tolerable region; 
Markov ChainMonteCarlo;Toxicology data analysis.

INTRODUCTION

Unavoidable hazardous chemicals are used in our daily lives. In 
agriculture, for example, pesticides and fertilizers are essential 
for efficient food production, but they may have adverse effects 
on consumers and the environment. In our homes, cleaning 
products contain a mixture of hazardous chemicals that could 
affect our health. It is therefore of interest to researchers to 
find the chemical dosage that maximizes productivity while 
minimizing the side effects. Understanding a chemical’s 
acceptable threshold helps in decreasing any adverse effects. 
Numerous toxicological studies have been conducted to 
model the adverse effects of chemicals that associated with 
dose-response data, such as Mumtaz et al. [1998], Groten et al. 
[2001], Ivanova et al. [2009], and Chen and Wang [2018]. Dose-
response models explain the relationship between chemical 
dosage and the response of the experi mental subject. Figure 
1 (a) represents the dose-response model as a solid curve 
fitted to the data; it shows a decreasing relationship between 
chemical dosages on the x-axis (x = Dose) and the response on 
the y-axis (y = Response). In cases where there is more than 
one variable defines a response, each subscale is considered 
as an outcome. For example in a pesiticide study by Moser et 
al. [2005] conducted on rodents, neurotoxicity is the desired 
response to be measured. However, there is no clear definition 
of neurotoxicity as it can be measured by several outcome 
variables such as Motor Activity, Stimulus Respose (such as tail 
pinch in rats), Blood Cholesterinase and Brain Cholesterinase. 
As there are multiple outcome variables in the response one 
needs to consider each subscale as each outcome variable 
may be more or less sensitive to each of the multiple chemicals 
(stressors). At tempts to compress the multiple outcomes into 
a single composite response can result in considerable loss of 
information. 
The tolerable dose is the chemical dose that can be 
administered without causing adverse effects. Popular 
chemical thresholding techniques use an ANOVA approach, 
such as the No Observable Adverse Effect Level (NOAEL) 
and the Lowest Observable Adverse Effect Level (LOAEL); in 
experiments, these thresholds determine the dose that causes 
no adverse effect and the dose that causes the lowest adverse 
effect, respectively, as shown in Figure 1 (b). For more about 
chemical thresholds, see Cox [1987], EPA [2012], Jakubowski 
and Czerczak [2014], and Chen and Wang [2018]. Instead of 
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using NOAEL, Crump [1984] developed a regression approach leading to the Benchmark Dose (BMD), which is the dosage 
that defines a predetermined response level of an adverse effect. NOAEL and LOAEL use only single points in the data and 
ignores the shape of the dose-response model, whereas BMD is calculated by using the curve fitted to the dose response data, 
so all information is considered. To use BMD, one must first specify the percentage of the response that is considered to be 
an acceptable adverse effect; which is known as the Benchmark Response (BMR), as shown in Figure 1 (c). Note that the BMR 
depend on certain levels (percent) of control, denoted by % as BMR with particulate interest associated with 1%5%10%, for 
example Crump [1984] also introduced the Effective Dose (ED) to determine the effectiveness of a dose, combining BMD and 
BMR in one notation, ED . These thresholds define the tolerable region (TR) which is the region under the dose-response model 
that contains the tolerable dosage with acceptable adverse effects, which is determined by ED . The level of the effective dose 
depends on the value of , which is set according to research goals. For example, consider a 10% change in the control group 
to be the acceptable adverse effect, known as ED90. Figure 1 represents ED90, which is bounded by the two dashed lines. The 
horizontal line corresponds to the 10% reduction in the adverse effect, while the vertical line corresponds to the associated 
dose, which is at 2 dosages. The rectangle area bounded by the ED90 is the TR containing the acceptable dose at a 90% adverse 
effect; for more, see Boone et al. [2015]. In our study, we use ED50, the median effective dose, which causes a 50% reduction 
in adverse effect on the exposed subject.

Figure 1

Figure 1: The dose-response model is fitted to simulated data by the solid line. The region of the tolerable dose is bounded by the percent 
to control vertically at ED90 and the chemical dose horizontally at two dose, presented by dashed green lines in panel (a). NOAEL, LOAEL and 
ED90 are introduced in panel (b), in red, blue and green dashed lines respectively. BMD and BMR are explained in panel (c), where the bounded 

rectangle area represents the tolerable region; this shows the safest dose at 10% reduction in the percent to control.

There are different experiments that could be utilized for dose-response studies. In other words, toxicologists consider 
experimental design to determine the chemical tolerable dose and the TR, since there are undoubtedly more efficient designs 
of experiment. Use of the optimal design contributes to fulfilling the research goal by ensuring an accurate finding. From 
Chaloner and Verdinelli [1995] ”Experimental design involves the specification of all aspects of an experiment. Common 
sense, available resources, and knowledge of the motivation for carrying out the experiment often help in selecting important 
features that depend on the specific problem.” Ray designs, as in Gennings et al. [2004], are a popular choices for toxicology 
experiments. They allow toxicologists to dose the experimental unit by increasing the dose incrementally in the form of a ray, 
where the second dose exceeds the first. Figure 2 presents a ray design in which x1 and x2 are two different chemicals. Figure 
2 (a) shows a one-ray design, Figure 2 (b) shows a two-ray design. For more about ray designs, see Stork et al. [2007].
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Figure 2

Figure 2: Ray design plots involving two different chemicals x1 and x2. Panel (a) represents a one-ray design, panel (b) a two-ray design.

Design of experiments (DOE) can be regarded as a sequential process where outcomes from an initial experiment can be 
used to guide them to additional experiments. Follow up experiments are often necessary to improve precision or resolve 
ambiguity, and several techniques exist for selecting follow-up runs. One such approach relies on alphabetic optimality criteria, 
which had received much attention in engineering and science applications, for example, in studies by Clyde [1994], M¨ uller 
[2005], Chu and Hahn [2008], and Guest and Curtis [2009]. Common criteria for optimal experimental designs are written as 
functions of the information matrix. For example, D-optimality minimizes the generalized variance of the parameter estimates, 
whereas A-optimality minimizes the average variance of the parameter estimates. Other optimal experimental design types 
are mentioned in, Silvey [1980], Chaloner and Verdinelli [1995], and Atkinson et al. [2007]. In this article, we introduce a novel 
Bayesian criterion based on the variance of the area of the tolerable region to determine the optimal follow-up design points, 
which may then be used to better define the safest chemicals such as pesticide exposure limits. This work extends the previous 
work of Boone et al. [2015] and Farhat et al. [2019] who focused on determining a tolerable dose region in experiments 
with multiple outcomes and multiple stressors, with the former looking at additive stressor effects and the later considering 
where the stressors interact. However, there is no guidance on experimental design for researchers who wish to design an 
experiment that considers multiple outcomes and multiple stressors. In Section 2 a review their modeling methodology is 
given followed by a description of the approach of Farhat et al. [2019] for determining the Bench Mark DoseTolerable Region 
in Section 3. Section 4 presents a new optimality criterion for follow up design points for these types of experiments. The 
remainder of the manuscript considers several illustrative examples in Section 5 and discussion and conclusion in Section 6.

METHODOLOGY

Bayesian Model
To determine the relationship between chemicals and their side effects in a dose-response model, a Bayesian approach is 
employed model that accounts for the interaction among the chemicals. The experiment here will be conducted in a manner 
that experimental unit i is administered a single dose of a combination of several chemicals (stressors), then each of the 
outcome variables are measured. Let J be the number of outcome variables, K be the number of chemicals (stressors) that the 
experimental unit will be dosed with and n be the number of experimental units. The response for the ith experimental unit 
on the jth outcome variable is denoted yij, which is then put in vector form as a J 1 vector, Yi = (yi1 , yi2 , . . . , yiJ)T, for i = 1, 2 , . 
. . ,  n. Let xik be the dosage of the kth chemical on the ith experimental unit, which is then formed into a vector Xi = (xi1 , xi2 , 
. . . , xiK), for i =12 nwhichrepresentsthesingledosechemicalcombinationthatisadministered to the experimental unit.To relate 
the chemical combination dose to each out come variables there are J functions f1 f2 fJ where E[yijXXXi]=fj XXXi j and j is the 
vector of parameters associated with function fj. Note that for this work, all the functions fj are assumed to be monotonic and 
hence invertable ,i.e. f 1 exists. In addition for this work , the j will be vectors of regression coefficients that can be organized as 
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β = (β1 , β1 , . . . , βj) Putting all the items together the expected 
value of the response vector Yi for the ith subject after being  
exposed chemical dosage combination Xi is as follows:

Here ri is a random effect to allow for the with in subject 
effect across the end points. For clarity, it should be noted 
that experimental unit i is dosed with a single dosage 
combination,Xi,and each of the out come variables are 
measured from this one dosage combination.Hence there is 
no index j on Xi.
The model in equation (1) allows for each outcome variable 
to be modeled separately for each dose combination while 
considering the within subject effect. Note that this for- 
mulation will allow flexibility when specifying the likelihood 
associated with each experi- mental outcome as it may differ 
from outcome to outcome. For example, one outcome may be 
a continuous random variable where a Gaussian likelihood is 
appropriate and another outcome may be a discrete random 
variable such as Bernoulli or Binomial, which happens to be 
the case in the Moser et al. [2005] dataset. The requirement 
that each of the mean functions f j be monotonic, and 
thus invertible, will allow for easy calculation of a tolerable 
dose combination given a specified level of risk. As will be 
demonstrated in the Section 3 the tolerable dose combination 
will be a set (the preimage) not a single value and the linear 
component X i

T β j will aid in its determination.

Prior and Posterior Distribution
As a Bayesian approach is being employed the likelihood must 
first be defined. In this case the likelihood must be defined 
for each of the outcome variables. Let g j be the likelihood 
function for outcome variable j. Specifically, the likelihood of 
yi j is given by g j yi j| f j, X i, β j, ri, γ j , for j = 1, 2, . . . , J. Here 
γ j are parameters that may be needed to completely specify 
the probability distribution. For example, if yi j has a Gaussian 
distribu- tion then the variance parameter, σ2 is needed 
and hence γ j = σ2. Or in the case where yi j has a Binomial 
distribution then the number of trials m is needed and hence 
γ j = m.
We are considering the Bayesian approach, therefore, we have 
to define the likelihood for the data, the prior distribution for 
parameter β and the process of sampling from the pos- terior 
distribution. The probability density function that represents 
the response measure- ments of the ith subjects on the jth 
outcome is given by g j(yi j|XT , β j, r j, γ j), j = 1, 2, . . . , J. 
The γ j are extra parameters in the distribution. Knowing 

that the β′js and γ′js outcomes where the y j are conditionally 
independent. The likelihood is presented as follows:

For consistency with previous work the prior distributions as 
specified the same as those by Boone et al. [2015] and Farhat 
et al. [2019]:
  
β|µ, Ω ~    N(µ, Ω)
µ|a, A ~    N(a, A)
Ω|R, ρ ~    Wishart(R, ρ)
γ j ~    p(γ j)
ri|ω2 ~    N(0, ω2)
ω2 ~    Gamma(1, 1)

where β represents the regression coefficient vectors as 
defined previously, µ and Ω denote the mean vector and 
the accuracy matrix, respectively for β, R represents the 
correlation matrix with ρ being the degrees of freedom 
and a and A are hyper parameters for µ. The as mentioned 
above γ j are additional parameters that may be needed for 
different outcome types the, prior distribution of γ j should 
be chosen accordingly. The prior distribution along with the 
likelihood specified produces the posterior distribution given 
in equation (2). Notice that the posterior distribution can not 
be expressed in closed form, and hence will be approximated 
using Markov Chain Monte Carlo (MCMC) techniques.
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Different software to implement MCMC sampling may be 
used such as, WinBUGS, Open- BUGS, JAGS, STAN etc. For this 
work JAGS is employed. The analysis algorithm of the samples 
determines the favorable goodness of samples which 
convergence Gelman et al. [2013]. These Samples are drawn 
from the beginning of the process which are not accurate due 
to lack of stability of the Markov chain. Trace plot analysis 
discard weak samples by burn-in, which is assesses the 
convergence of the chains where it is available for all param- 
eters. In the literature there are different sampling tools from 
the posterior distribution, this sampling tool presented in 
Andrieu et al. [2004].
We are using the Bayesian experimental design for 
constructing more robust designs, for more information see 
Clyde [2001].
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THE BMDTR EVALUATED

BMDTR is the region in the chemical space, that represent 
the tolerable dose combinations at a specific level of interest 
with its corresponding tolerable exposure adverse effect. In 
our research, we focus on measurements of three continuous 
outcomes (Exponential) as a result of exposure to the K 
chemicals. The Bayesian estimate of BMDTR is obtained 
via MCMC sampling (m = 1, 2, . . . , M) from the posterior 
distribution with both burn-in and thinning. In our proposed 
method we determine the BMDTR at chemicals dosages and 
the interactions of its adverse effects. For a continuous jth 
outcome, use the following dose response model for K = 2 
chemicals,

where the link function fi can be found as:

Where the β0 j is the unknown intercept, βi j are the unknown 
slope parameters associated with each component, ri is the 
random effects, and (xki) are the doses of the chemicals. 
The jth outcomes come from an exponential experiment. The 
model considered is as follows:

Evaluation of the Tolerable region (TR)
The BMDTR determines an acceptable level of multiple 
chemicals. Determining the BMDTR depends on specific 
measurements and thresholds that is analogous to BMD with 
specific level of BMRη as introduced in Boone et al. [2015]. 
To calculate the tolerable region, we fit the models of the j 
outcomes to the data. Then, the intersection area of all J 
tolerable re-gions TR = TJ

j==1TRj will define the BMDTR. BMDTR 
is defined across all generated MMCMC samples, therefore, 
for each MCMC sample of β(m) a BMDTR ,TR(m) is defined. The 
area A of TR is associated with the mth MCMC samples which 
denoted by ATR(m) and has the following formula

ATR(m) = ∫TR(m) dX, m = 1, 2, 3, . . . , M.

The tolerable area {ATR(m)}M/m=1 can be ranked and the 
lower bound on the area of the TR will be defined among 
the MCMC samples of β which corresponds to the adverse 
effect percentage of interest. For more explanation in Figure 
3, x1 and x2 represent the two differ- ent chemicals that we 
are testing. We fitted the outcome models to the data as 
represented by the green and blue color curves, we find the 
intersection area of all outcomes. The small- est area with the 
smallest distance d from the origin across all MCMC samples 

will be the TR. The outcome with the smallest distance from 
the origin that is shown in Figure 3 by the black line, that will 
determine which outcomes play a role in defining the TR. 
Then the area of the TR will be calculated as the red lines 
going across angles theta θ = θ1, θ2, . . . θi using the distance 
d formula d(m)

(θ) = min j{d(m) 
j(θ) }. The area under the curve is A 

which defined by
 

Where ai is the area of a triangle of each red line under the 
curve which has a single θ and form a triangle shape with the 
following equation.

 These equations are calculated across all samples to find the 
TR which has the minimum distance from the origin. In Figure 
3 the curves parameters are not define here since its just for 
illustration of the TR calculation techniques.

Figure 3

Figure 3 : Fit of two models represented in blue and green 
curves. Defining the tolerable region under the fitted model 
by the red lines, which partition the area to calculate the ATR(m).

BMDTR Evaluation for all MCMC Samples
The methods used to calculate BMDTR consider all MCMC 
samples (after burn-in and thinning). It follows the same step 
used in Boone et al. [2015] and Farhat [2014], specifi- cally in 
a way of finding the desired η value, determining the BMRη, 
and finding the link function for the appropriate model. Steps 
of evaluating the BMDTR using MCMC samples is as follows,
S.1 Partition the chemical space by dividing the chemical 
space into N equally spaced angles (θ1, θ2, . . . , θN) and 
increment the angle by u (for instance, π/180 or π/360 
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increments could be used), where                                , and on 
the other hand θv+1 = θv + u for all v and u.
S.2 For each m=1 to M, successively with each angel:
a pull a sample βm from the posterior distribution of 

parameters β.
b Consider the sample in a) and determine which outcomes 

have the minimum distance to the origin 
 in the same time with                                . Now we let

c Repeat step 2a and 2b for all MCMC samples. The 
result will be the minimum distance          known as      

whichwillhave adistribution along the ray as shown in 
the figure.

d Then we sort         and pick the distance that is attached to 
the 5th quantile, which is           and recalculate the value 
of                                    theta associated with it. Though

     we considered the 5th quantile, it is possible to use a 
different quantile in the third step. 

        BMDTR=                                    with all      .

In this research we consider three different curves fitted with 
different parameters values β = (β1, β2, β3) that correspond 
to the curves in Figure 4. The tolerable region is defined by 
the intersection of the three curves as shown in Figure 4 (a) 
that represent the fitted curves and Figure 4 (b) shows the 
curves with the shaded area as the TR.We see the black curve 
has with the smallest distance from the origin which define 
the TR, using the above Algorithm in Section 3.2. Moreover, 
Figure 4 show an explanation of the fitted models curve that 
define the TR and identify the TR in the shaded area.

Figure 4

Figure 4: True Tolerable Region represented in panel (a) the fitted 

model where panel (b) shows the shaded area as the tolerable region. 

BAYESIAN OPTIMAL EXPERIMENT DESIGN

In the literature, multiple optimality criteria have been 
developed for different goals of ex- perimental design, such as 
reducing the costs of an experiment, minimizing the variance 
of an estimator or to obtain the most useful experiment 
phase to perform statistical analysis. For more see Verdinelli 
[1992], Clyde and Chaloner [1996] and Atkinson [1996]. Opti- 
mal design details and mathematical theory are introduced 
in Pa´zman [1986] and Fedorov [1972], with more about 

optimal experiment design in Pukelsheim [2006].
Bayesian optimal design is sensitive to the prior and posterior 
distribution of parameters model and in our research we are 
considering the posterior predictive distribution, since the 
posterior distribution does not count for future runs in an 
experiment. Posterior predictive distribution is known as the 
distribution of possible unobserved data conditional on the 
observed data, it has the following formula. 
                                                         , where x˜ is the new observed 
data, X is the existing observed data and β is the parameter 
β є Θ.The new observed data x˜ obtained by MCMC sampling 
method and that is independent of the sample data X . For 
more about Bayesian optimal experimental design see 
Tsutakawa [1972], Tsutakawa [1980], Chaloner et al. [1984], 
Chaloner and Verdinelli [1995], Chevret [2006] and Wang et 
al. [2013].
 
Bayesian Follow-Up Design
A follow-up experimental design is often needed to improve 
precision of model parameter estimation or to further 
explore the experimental region. Optimality criteria (such as 
D- optimality) are often used to select follow up runs. Here 
we consider finding the optimal additional control sets (doses 
of chemicals) to better define the TR. Recall the TR is defined 
as the intersection of the Benchmark dose limit BMDL as TR 
= BMDLi j, and the area of the tolerable region is define as 
ATRi = TRi dx. In this article we propose a follow up design 
experiment that seeks to minimize the variance of the area 
of the TR. In order to define our criterion, we make use of the 
posterior predictive distribution, that is

where Y2 is a vector of future observation, Y1 is the initial 
design points and e is the follow up design. Our criteria is 
therefore defined by

Our goal here is to use this criterion in determining the 
Bayesian Optimal Follow-up Ex- perimental Design (BOFED) 
points, by finding the points that make the minimum variance 
of the area of the TR. To compute this criteria Equation (7); 
we generated data from an initial design points y1, which 
are the design points that have been defined from initial ex- 
periment. After that, we fit our outcome models Equation (3) 
to the data. Then, we want to define the posterior predictive 
distribution which is a distribution that tends to be dif- ficult 
to obtain. Therefore, we obtain it by sampling from the 
posterior distribution then conditioning on these samples we 
then obtain new samples, repeating that a 100 times will then 
obtain the posterior predictive distribution. Then we predict at 
the future design points e which have 100 pairs of candidate 
points. One pair per design were examined on two rays. Then 
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we calculated the TR and repeated that 100 times across all MCMC samples to calculate the ATR while considering the new 
design point. We calculated the variance across all 100 candidate design points and determined the minimum variance of the 
TR that corresponds to the optimal Bayesian follow-up experimental design e. The following algorithm explains the steps we 
used in our approach.

Algorithm 1: Determining the optimal follow-up design points

for m=1 to M do
S.1 Samples are drawn to obtain posterior predictive distribution from the posterior distribution f (Y2|Y1, e).

S.2 Predict future design points e for 100 candidate points along two ray design.

S.3 Calculate the variance of the tolerable region across all candidate points.

S.4 Determine the Bayesian optimal follow-up design points that have the minimum variance of the tolerable region 
using Equation (7).

end

Figure 5 explains the above mathematical description. When samples are drawn from the data, a posterior predictive is 
generated about the new data points. These samples have variations when determining the TR, shown by blue and red curves. 
In Figure 5 (a) we see a variation around the fitted models which makes the TR unstable. In Figure 5 (b) the TR is more stable 
since we consider the minimum variance of the TR, which considers our optimal criteria.

Figure 5

Figure 5: Panel (a) shows the possible variation around the curve intersect that defines the tolerable region across all MCMC samples where 

panel (b) represents the less variation that defines the tolerable region when using the criteria in Equation (7).

ILLUSTRATIVE EXAMPLE

We need to find the minimum variance of the tolerable region with minimum dose. The ED50 process spent 42.8 hours per 
design of MCMC simulation. This draws a samples from the posterior distribution using the Gibbs Sampler JAGS Lunn et al. 
[2009]. The posterior distributions are used to determine the optimal fit of the study, sampling 100 times from the 5000 
outputs as a pair of x1 and x2 from 1 through 10. We considered fitting the exponential dose-response models to two different 
cases. First Case: Design points that are generated from the initial design considering one ray design. Then, the optimal follow-
up design points determined in a two-ray design. Second Case: Considering design points that are generated from the initial 
design of two ray design. Then, the optimal follow-up design points determined in the two-ray design.
One-ray designs are used in Meadows et al. [2002] considering the combination/mixture data of chemical. Base design and 
candidate design points are used to generate the study in this research as shown in Figure 2. Each ray has ten possible points 
and a pair of optimal points will be chosen among them. The optimal follow-up point is determined by the de- sign points that 
correspond to the minimum variance of the tolerable region under the fitted models. To start with an optimal base design, we 
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replicate across the experimental points to determine the most stable area. Among 10 replicates we found that 4 replicates 
has the largest drop in error, so we choose 4 replicates for our two initial designs. Replicates help ensure patterns that indicate 
the need for sequential design.

Result
Four different possible scenarios are considered in this research, as shown in Figure 6. Each scenario has different parameter 
values that will be introduced later, which change the tolerable region shape and the area in each scenario. Simulated data 
is used in this article with four replicates to study the four different scenarios. Each scenario has 10 possible dosages along 
two rays design. One pair of these dosages will be the BOFED point, which is determined by the criteria introduced in Section 
4.1. The different scenarios in Figure 6 are generated from the same simulated data, with a unique set of parameters for each 
scenario that used in the general Equation (3) which specify as follows for our study:

For all scenarios the prior distributions specification are as follows: β ~ N(µ, Ω), µ ~ N(0, 100 I9), Ω ~ Wishart(I9,9), σ j ~ Gamma(1, 
1), ri ~ N(0, ω2), ω2 ~ Gamma(1, 1), where I9 is a 9 × 9 identity matrix and other parameters are as defined in Equation (2). 
Likelihood and posterior distribution introduced in Section 2.1. Each scenario has three ex- ponential models with different 
parameters that contribute to the different scenarios, which change the fit of the models and changes the tolerable region 
for each scenario. Panels in Figure 6 shows the three models that bound the TR, in panel (a) the TR bounded by the red line 
model which is the small area of that setting and the other curves affect the area but does not bound it. In panel (b) the TR is 
bounded by two models in red and green curves where the blue does not include in defining the TR, panel (c) shows the TR by 
the intersec- tion of two curves red and green and again, the blue curve affects but not including in the determination of TR, 
and panel (d) represent the TR as wide as possible and bounded by al- most the three curves. Models of each scenario with the 
parameters settings are introduced here in Subsection 5.1.1 and 5.1.2.

Figure 6

Figure 6: Scenarios, Panel (a) shows the First Scenario where the TR is the area bounded by the red curve, Panel (b) shows the Second Scenario 

where the TR is the area bounded by the red and green curve, panel (c) shows the Third Scenario where the TR is the area bounded by the 

green curve intersects with red curve and panel (d) shows the Fourth Scenario where the TR is the area bounded by the green curve.
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Will these scenarios affect the Bayesian optimal follow-up design points? To answer the question we investigated the two 
different cases for each of the four scenarios. When introducing the result for each scenario, we present a Figure with three 
different panels (a), (b) and (c). Panel (a) represents the scenario plot with the two ray design and two solid red points on the 
rays as the BOFED points and open circles that represent the candidate points for each scenario. Furthermore, visualization of 
the minimum variance distribution of the TR for all possible design points will be represented in a heat map in panel (b) and a 
heat map of the standard error distribution around the minimum variance of the TR for all possible design points is shown in 
panel (c). Both heat maps have an x-axis and a y- axis ranked from 1 to 10 as it is all the possible design points. The heat maps 
have color gradients from dark red to light yellow, the dark color associated with lower minimum variance and light color are 
associated with large minimum variance. Each colored square represents points in the heat map that are read as x1 and x2 
points which are the candidate design points. Our optimal point will be the point that has the minimum variance which will 
have the darkest color in panel (b).

First Case
First Case as introduced in Section 5 and shown in Figure 2 (a) which generates the follow- ing four scenarios:

First Scenario, which has the following models:

f1(X
T β1) = exp(−0.08664x1 − 0.086648x2 + 0.008x1x2 + ri)

f2(X
T β2) = exp(−5 − 0.099x1 − 0.099x2 − 0.9x1x2 + ri) 

f3(X
T β3) = exp(−5 − 0.09x1 − 0.09x2 − 0.091x1x2 + ri)

These models are defined using Equation (8). Figure 7 (a) represents the first scenario with the BOFED points, the tolerable 
region bounded by the red curve and the BOFED points are indicated by the solid red points at (x1 = 9, x2 = 9). Point (x1 = 9, x2 = 
9) is the point that has the minimum variance of the TR among all other possible candidate design points. We see in Figure 7 (b) 
the possible optimal design points will be the points with the dark red color which approximately ranges from point (4) to (10) 
on the x-axis and the y-axis ranging from (3) to (10). These points are determined by lower variance among other design points. 
On the other hand, we see points with light yellow color gradients approximately ranging from points (1) to (3) in the x-axis with 
points from (1) to (10) in the y-axis, indicate high variance. Figure 7 (c) shows the heat map of the standard error around the 
minimum variance of the TR for each design point to check the precision of our optimal point. We see that all possible optimal 
points with the dark color are approximately points ranging from (4) to (10) on the x-axis to the y-axis ranging from points (1) 
to (10), which are around our optimal design points. That indicates (x1 = 9, x2 = 9) as an optimal follow-up design point for the 
first scenario since it has the minimum variance on Figure 7 (c). Comparing the heat maps in Figure 7 (b) with (c), we see darker 
points in panel (c) that vary more among the heat map than in panel (b) with the same optimal design point in both heat maps.

Figure 7

  

Figure 7: Panel (a) shows the 1st Scenario with Ray plot and the BOFED at point (x1 = 9, x2 = 9). Panel (b) represents the first scenario heat map 

of the possible design points and panel (c) shows the Standard error around all possible design points.
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Second Scenario, has the following models:

f1(X
T β1) = exp(−5 − 0.07x1 − 0.07x2 − 0.8x1x2 + ri) 

f2(X
T β2) = exp(−5 − 0.099x1 − 0.099x2 − 0.9x1x2 + ri) 

f3(X
T β3) = exp(−5 − 0.09x1 − 0.09x2 − 0.091x1x2 + ri)

Equation (8) used to defined Equation (10) which constructs the curves in Figure 8 which defines the second scenario. Figure 
8 (a) represents the second scenario with the BOFED points (x1 = 7, x2 = 6) which has minimum variance and it indicated by 
the solid red points on the rays. The tolerable region bounded by the red and green curves. Figure 8 (b) represents the second 
scenario heat map of all possible design points with the minimum variance of TR, we see that approximately points ranging 
from (3) to (10) in each axis are possible optimal design points. All possible optimal design points are represented by the darker 
red color since it is associated with lower variance. On the other hand, we see Figure 8 (c) represents the heat map of standard 
error distribution around the minimum variance of the TR, which shows all possible variation of design points. The standard 
error heat map in Figure 8 (c) is scattered as shown and the standard error for the BOFED points that has the minimum 
variance with a minimum standard error as well. Comparing the two heat map we see that Figure 8 (c) has more variation 
around our optimal point that indicates the precision of our point.

Figure 8

 

Figure 8: Panel (a) represents the 2nd Scenario with Ray plot, BOFED point (x1 = 7, x2 = 6).Panel (b) shows the Second scenario heat map of 

possible design points and panel (c) shows standard error heat map around all possible design points.

Third Scenario, has the following models:

f1(X
T β1) = exp(−0.08664x1 − 0.08664x2 − 0.008x1x2 + ri) 

f2(X
T β2) = exp(−0.09664x1 − 0.09664x2 + 0.008x1x2 + ri) 

f3(X
T β3) = exp(−0.08664x1 − 0.08664x2 + 0.008x1x2 + ri)

The third scenario has models derived from Equation (8), which constructs the plots in Figure 9. The tolerable region is bounded 
by the intersection of the red and green curves and the BOFED points are indicated by the solid red points (x1 = 10, x2 = 9) as 
shown in Figure 9 (a). Figure 9 (b) is the third scenario heat map of all the possible optimal design points that range from (6) 
to (10) on both axis with lower variance. Point (x1 = 10, x2 = 9) is the BOFED point since it has the minimum variance among 
all other points. The points in Figure 9 (c) are the standard error distribution around the minimum variance of the TR for all 
possible optimal design points which has a scatter representation. We see that our optimal point is not the same optimal 
point in Figure 9 (c) since it does not have the minimum variance. The standard error heat map indicates that there are other 
possible optimal design points. So further investigation and studies could be conducted in future research.
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Figure 9

Figure 9: Panel (a) represents 3rd Scenario with ray plot, red solid points is the BOFED point (x1 = 10, x2 = 9). Panel (b) shows the third scenario 

heat map of possible design points and panel (c) shows the standard error around all possible design points.

Fourth Scenario, has the following models:

The fourth scenario has the models that are defined in Equation (12) using Equation (8), which construct the curves in Figure 
10 with the BOFED points. Figure 10 (a) shows the tolerable region for the fourth scenario bounded by the red and green 
curves. The BOFED points are indicated by the solid red points at point (x1 = 10, x2 = 10), which has the minimum variance. 
Figure 10 (b) shows the heat map of possible design points which range from (6) to (10) on the x-axis and from (1) to (10) 0n 
the y-axis. Figure 10 (c) represents the heat map of standard error distribution around the minimum variance of the TR around 
all possible design points as more scattered. From the standard error heat map we see that there is an equivalent point to our 
BOFED point that could be investigated in further research.

Figure 10

Figure 10 : Panel (a) represents the 4th Scenario with ray plot and the BOFED point in red solid points at (x1 = 10, x2 = 10). Panel (b) shows the 

fourth scenario heat map of the possible design points and panel(c) Standard error around all possible design points.

In each scenario we see a variation in the BOFED points due to the considered sce- nario. The first and second scenarios have 
stable BOFED points, where the third and fourth scenarios show more variation around their BOFED points. Comparing the 
first scenario to the third scenario, the first TR is close to the origin while the second TR is away from the origin and defined by 
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the intersection of two curves causing variation we see in the heat maps and the determined BOFED.

Second Case
Second Case as introduced in Section 5 and shown in Figure 2 (b) which generates the next four scenarios. First Scenario, has 
the same models as Equation (9). Figure 11 (a) represents the first scenario with the tolerable region bounded by the red curve 
and the BOFED points are indicated by the solid red points at point (x1 = 7, x2 = 9). Figure 11 (b) shows the heat map of all 
possible design points scattered where the darker color corresponds to minimum variance and the lighter color represents 
a high variance. Figure 11 (c) shows the heat map of the standard error distribution around the minimum variance of the TR 
around all possible design points, and we see point (x1 = 7, x2 = 9) has a dark color which has minimum standard error at this 
point indicating the precision of our BOFED points.

Figure 11

Figure 11: Panel (a) represents the 1st Scenario for second case with ray plot and the BOFED point at (x1 = 7, x2 = 9). Panel (b) shows the first 

scenario heat map of the possible design points and Panel (c) shows the Standard error around all possible design points.

Second Scenario, has the same models as Equation (10).
Figure 12 (a) represents the second scenario in the second case with the BOFED points in the red solid points at (x1 = 1, x2 = 10). 
The tolerable region is bounded by the red and green curves. Figure 12 (b) shows the second scenario heat map of all possible 
design points and its scattered spread and its read as the previous scenarios. Figure 12 (c) repre- sent the heat map of standard 
error distribution around the minimum variance of the TR around all possible design points and we see that point (x1 = 10, x2 
= 1) has the minimum standard error, and that is different from the BOFED point in panel (b) that indicate more investigation 
could be done to know other points.

Figure 12

Figure 12: Panel (a) represent the 2nd Scenario with ray plot and the BOFED point at (x1 = 1, x2 = 10). Panel (b) shows the second scenario heat 

map of the possible design points and panel (c) shows the heat map of the Standard error around all possible design points.
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Third Scenario,has the same models as Equation (11).
These models construct the curves in Figure 13 (a) represents the third scenario with the BOFED points and the solid red points 
at point (x1 = 9, x2 = 9) which has minimum vari- ance. The tolerable region in third scenario is bounded by the intersection 
of the red and green curves. Figure 13 (b) shows the heat map of all possible design points in the third scenario. Figure 13 
(c) shows the heat map of the standard error distribution around the minimum variance of the TR around all possible design 
points. Both heat maps are scat- tered and had more of yellow color at the design points which represent a higher variance 
at these points. The point with the minimum variance in Figure 13 (c) is different than the BOFED points in Figure 13 (b) which 
means there are equivalent points to our BOFED point and that could be investigated in future research.

Figure 13

Figure 13: Panel (a) represent the 3rd Scenario with Ray plot and the BOFED point at (x1 = 9, x2 = 9). Panel (b) shows the third Scenario Heat 

map of the possible design points and Panel (c) shows the heat amp of the Standard error around all possible design points

We see a huge difference in the heat maps comparing the first scenario heat maps to the third scenario heat maps. That is due 
to the variation and the difference in the TR, we see the first scenario TR is close to the origin where the TR in the third scenario 
is a mixture of two curves and away from the origin and that caused the difference we see.

Fourth Scenario,
In the fourth scenario the models are defined by Equation (12) which construct the curves in Figure 14. Figure 14 (a) represents 
the fourth scenario with the BOFED points are indicated by the solid red points at (x1 = 10, x2 = 1) which correspond to the 
minimum variance. The tolerable region in the fourth scenario is bounded by the red and green curves. Figure 14
(b) shows the heat map of all possible design points, it read as we mention in previous scenarios. Figure 14 (c) shows the heat 
map of the standard error distribution around the minimum variance of the TR around all possible design points. We see both 
heat maps are scattered and has different BOFED points and it indicates possible BOFED equivalent point could be conducted 
in future research.

Figure 14

Figure 14: Panel (a) represents the 4th Scenario with Ray plot and the BOFED point (x1 = 10, x2 = 1). Panel (b) shows the fourth Scenario Heat 
map of the possible design points and panel (c) shows the Standard error around all possible design points
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The scenarios and plots represent the location of the BOFED 
points. There is variation in the result at each scenario that is 
related to the shape of the TR that affects the BOFED points. 
When the TR is away from the origin the variation increases 
around the BOFED points as shown in the heat maps. The 
follow-up experimental design points are different in each 
scenario and have various possibilities of BOFED points. Each 
case represents a different BOFED point and that is due to 
the different data generated for each case. We could report 
the BOFED points to researchers to help them continue their 
experiment and learn about their subject by dosing at the 
BOFED points and have a stable tolerable region.

DISCUSSION AND CONCLUSION

In this research, we proposed a novel method to determine 
the BOFED points consider- ing a toxicity experiment. Starting 
with a methodology to analyze datasets with multiple 
outcomes and multiple stressors in the dose-response setting. 
We estimated the tolera- ble region using MCMC techniques. 
Then, we find the BOFED points for future runs by minimizing 
the variance of the TR over the posterior predictive distribution 
in the fu-ture dose for a new run. This method uses the 
notation of area or volume to define the BMDTR for multiple 
chemicals. The idea discards outcomes that do not contribute 
to the BMDTR systematically from future consideration. We 
considered different possible exper- iment scenarios and 
determine the tolerable region for each scenario and define 
the results of the BOFED points in each scenario. Researchers 
learn about all possible BOFED points using optimality criteria 
that determined the best follow-up design points, making it 
easier for researchers to produce more runs. That approach 
showed us the different impacts each scenario has on the 
BOFED points. This novel approach was developed using 
JAGS with computational effort. Computationally it takes 
more than 100 hours per run due to the 5 MCMC chains used, 
10,000 MCMC samples taken, and 1,000 burn-in samples. 
Then the chains were thinned by 10 and 1,000 samples were 
used for inferences. Diagnostics were checked to ensure 
convergence and quality of MCMC samples. Thus, the optimal 
design criteria face some challenges in time when calculating 
the integral of the area, and defining the optimal follow-up 
design points, it spent a lot of time since it counts for all M 
MCMC samples. As a future research, investigating different 
dose-response models by adding the Binomial distribution 
will extend our method to cover different distributions. One 
can ma- nipulate the properties of the binomial model to 
get an optimal fit, and find how it affects the choice of the 
BOFED. Applying this method to a real-life problem can help 
researchers to determine their next follow-up experiment to 
their study. This method could be applied to nonparametric 
models and investigate the BMDTR and the BOFED.
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