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/ Abstract

Lung cancer is the first cause of cancer death worldwide. How to realize precise theranostics and management of Lung cancer has huge clinical
demand. In past decade, artificial intelligence (Al), especially machine learning (ML) and deep learning (DL) are broadly used in medicine. Herein
we focus on reviewing the main advances of ML and DL in diagnosis, treatment and prognosis of lung cancer. Besides, we summarize Al’'s
advantages, explore how Al assists theranostics of lung cancer by innovative Al algorithms, then we discussed the opportunities and challenges
as well as the future directions in the clinical implementation of Al in lung cancer. Overall, Al integrated with multidisciplinary technology and data
is a new development trend, its application in theranostics of lung cancer owns excellent clinical transformation value and prospect in near future.
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INTRODUCTION

Artificial intelligence (Al) is a new technical science that studies
and develops theories, methods, technologies and application
systems used to simulate, extend and expand human
intelligence[1], It is an important driving force for the new
round of scientific and technological revolution and industrial
transformation. Its application exploration has become
frontier hot spot since Al was proposed by mathematician
john mccarthy in 1956 [2]. In the past decade, Al has been
widely used in medicine[3], great advances have made in those
directions such as nanoparticles-labeled tomography chip
for biomarker detection[4], immunochromatographic assay
and microfludic chip[5,6], medical biosensor for Healthcare
System[7,8], cancer diagnosis and tumor nanomedicine[9-11],
molecular image diagnosis[12], surgical interventions[13],
drug discovery and overcoming multidrug-resistance[14],
surgical skills training and assessment[15,16], hospital-wide
big data analysis[17], and personalized therapy [18-20].

Machine learning is one kind of implementation pathway
of Al, mainly study learning algorithms. Machine learning

algorithms mainly include supervised learning, unsupervised
learning, semi-supervised learning, reinforcement learning,
deep learning, transfer learning, etc[21]. Deep learning (DL)
is a new mean of machine learning, uses machines to treat
various training data and to extract specific features by
using backpropagation algorithms. DL mainly used multi-
layered artificial neural networks to analyze data to establish
DL models by using Convolutional Neural Network(CNN),
Recurrent Network(RNN), Deep Reinforcement
Learning(DRL) and Generative Adversarial Network(GAN)
[22]. DL models mainly adopt logic to treat data, recognize
patterns, make conclusions, and make decisions[23]. In
short, Al is based on the computer algorithm which is trained
to realize the special functions including identifying and
characterizing defined lesions. The computer algorithm is
trained by exposing a large number of training elements using
the previously described Machine Learning. Clinical decision
support systems based on Al has made great advances[24].

Different types of Al computer systems are aimed to achieve
different functions. Two main categories of Al systems are
computer-aided detection (CADe) for lesion detection and
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computer-aided diagnosis (CADx) for optical biopsy and
lesion characterization[25,26]. Other Al systems provide
assisted treatments, such as lesion description for complete
endoscopic  resection[27], programmed
diffractive  robotics magnetically

magnetically
developed[28],
controlled wireless power supply capsule endoscopy with
intelligent software was used for NIR imaging and treatment
of gastrointestinal diseases[29].

was

Al owns three outstanding advantages. Firstly, Al can optimize
and realize efficient and flexible nonlinear modeling for large
data sets. Secondly, these models can provide explanations
that make knowledge dissemination easier. Thirdly, the
human brain performance can be influenced by fatigue,
stress or limited experiences, Al can make up for the limited
capabilities of humans, prevent human errors, provide
machines some reliable autonomy, and enhance work
productivity and efficiency. Therefore, in order to service
the increasing patients, Al should be best choice to assist
theranostics and management of patients.

Medical and industrial cross integration is the indispensable
way of innovation and development[30]. The concept of
medical and industrial integration development is that:
based on the cross integration of medicine and engineering,
it continues to track hot areas such as molecular biology,
genomics, artificial intelligence technology, big data, cloud
computing, mobile healthcare, and the internet of things,
using quantum computing, 5G/6G communication, block
chain, nanotechnology, Internet of Things, Al, AR, VR, MR
technologies, to achieve prevention and diagnosis of diseases,
treatment and rehabilitation, drug research and development,
Traditional Chinese Medicine technology innovation. In short,
with clinical needs as the goal, nanotechnology etc as the

tools, information processing as the method, multidisciplinary
cross to break through the bottlenecks and challenges
of disease diagnosis and treatment[31-37]. For example,
integrated nano-oncology has made great progress[38].
Gold nanoprism-assisted human PD-L1 siRNA realized gene
therapy and photothermal therapy on lung cancer[39].
The quantity of medical robots with embedded Al software
have become more and more, and rapidly enter into clinical
application[27,40].

Lung cancer is first commonest malignancy among men
and the third commonest cancer in women worldwide[41].
The overall 5-year survival rate of lung cancer patients is
approximately 20%, however varies markedly depending
on cancer stage and molecular typing. Stage | lung cancer
patient has a 5-year overall survival rate of greater than 75%,
stage Il lung cancer patient drops to 25% of 5-year survival
rate [42]. Discovering early lung cancer is the only pathway
for its cure.

Up to date, biomarker diagnosis, imaging diagnosis, cell
and pathological diagnosis are the primary diagnostic
techniques of lung cancer[43]. Imaging diagnosis includes
nuclear magnetic resonance image(MRI), isotope image,
ultrasound, positron emission tomography and Computer
Tomography(PET/CT). X-ray chest radiography and CT are
the two common anatomical imaging modalities that are
regularly used to to recognize different lung diseases[44].
Herein we review the main advances of application of Al
in diagnosis, treatment and prognosis of lung cancer. We
outlook application prospect of Al in theranostics of lung
cancer, and discuss about the opportunities and challenges
brought by artificial intelligence ( Figure 1).

Figure 1. Overview of application of Al in theranostics of lung cancer.
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It is well known that lung cancer is the first commonest cancer worldwide. How to realize precise theranostics of lung cancer
owns great clinical demand. Up to date, as shown in Figure 2, CT-based imaging diagnosis is the primary tool to detect
lung cancer at early stage[45], Al in lung cancer bright the chance to integrate computational power and clinical decision-

making[46].
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Figure 2. CT Imaging in lung cancer. Instruction of the imaging modalities used in lung cancer screening, diagnosis, radiation
planning & delivery, and follow-up.
Reproduced from ref. 45 with permission from W.B. Saunders Ltd, Copyright 2022.
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In the key National Lung Screening Trial (NLST) study, lung cancer screening with low-dose computed tomography (LDCT)
showed a clear reduction in mortality[47]. Analogous results were also achieved in succeeding American and European
studies[48,49]. Annual CT chest screening could reduce lung cancer mortality by at least 20% after 7 years compare with
annual chest X-ray radiography[50].

While lung CT screening has the potential to dramatically reduce the number of lung cancer related deaths, the false positive
rate of LDCT screening for lung cancer is reported to be as high as 96.4%[51], and the radiologists undertake high burden to
make screening precise and efficient for large volumes of CT scans. On the one hand, it is very necessary to establish a new
method that can effectively distinguish benign from malignant pulmonary nodules. At present, lot of scholars try to extract
radiomic features of CT images of pulmonary nodules and establish theory models to realize the intelligent identification of
benign and malignant pulmonary nodules[52-54]. On the other hand, there is an urgent requirement to seek an auxiliary
mean, which can improve the diagnostic efficiency of lung cancer by integrating with CT imaging.

Al based on deep learning owns the ability of efficient self-optimization, which can enhance not only the recognition ability of
pulmonary nodules with different properties as shown in Figure 3, but also helps to improve the diagnostic efficiency of early-
stage lung cancer[55].

Figure 3. Categories of lung nodules in a CT scan; benign, primary malignant, and metastatic malignant (from left to right).
Reproduced from ref. 55with permission from MDPI, Copyright 2019.
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Al systems for Lung Nodule Detection and Classification

Togacar et al. used three deep learning models such as LeNet, AlexNet and VGG-16 to detect lung cancer. In addition, the
features obtained from the last fully connected layer of CNNs are used as input data for different machine learning models,
including linear regression (LR), linear discriminant analysis (LDA), decision tree (DT), support vector machine (SVM), Nearest
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Neighbor (NN) and softmax. The combination of the AlexNet
model and NN classifier achieves effective classification
precise rate of 98.74%[56]. Du et al. established a three-layer
diagnosis system for lung cancer, in which three machine
learning models such as decision tree C5.0, artificial neural
network (ANN) and support vector machine (SVM) were
involved[57]. Zheng et al. has achieved better performance
not only for small nodules but also for large lesions based
on this data set. This proves the effectiveness of the CAD
system they developed for the detection of lung nodules[58].
Wang et al. developed an innovative CNN-based nodule-size-
adaptive model for fast and precise candidate detection[59].
Pradhan et al. used a 3D Convolutional Neural Network (CNN)
to identify lung cancer, they obtained training accuracy of
83.33%, testing accuracy of 100% and precision, recall, kappa-
Score, and F-score of 1[60]. Xie et al. proposed a new automatic
lung nodule detection framework with 2D Convolutional
Neural Network (CNN) to assist the CT reading process[61].
Setio et al. established the LUNA16 architecture, an objective
evaluation framework for automatic nodule detection
algorithms using the largest publicly available chest CT scan
reference database LIDC-IDRI data set[62]. Firmino et al.
introduced a CAD system that contains two main components:
1) A computer-aided detection (CADe) module for detecting

and segmenting suspicious lung nodules, 2) A computer-
aided diagnosis (CADx) module, which realizes nodule level
assessment and patient-level malignant tumor classification
by analyzing suspicious lesions from CADe[63]. Sharma, et al.
demonstrated and verified a new type of tuberculosis nodule
detection system based on deep neural network[64]. Huang
et al. proposed an Amalgamated - Convolutional

Neural Network (A-CNN) and use it to screening pulmonary
nodules[65].
Nasrullah et al. used two deep three-dimensional (3D)
customized mixed link network (CMixNet) architectures for
lung nodule detection and classification, respectively. Nodule
detection were performed through faster R-CNN based on
efficiently learned features from CMixNet and U-Net like
encoder-decoder architecture. Classification of the nodules
was performed through a gradient boosting machine (GBM)
on the learned features from the designed 3D CMix Net
structure. Better results were obtained compared to the
existing methods[66]. Jung et al. used a three-dimensional
deep convolutional neural network (3D DCNN) with shortcut
connections and a 3D DCNN with dense connections for lung
nodule classification. They used an ensemble method that
aggregates the results of multiple trained models to boost
performance[67].

Figure 4. (A) CNN detection of pulmonary nodules. (B) Two different types of ensemble methods. The general ensemble
method (left) and checkpoint ensemble method (right) . (C) The flowchart of the three deep learning models.
Reproduced from ref. 67 with permission from Spring Nature, Copyright 2018.
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Lung cancer were classified into two major categories such as small-cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC). SCLC constitutes approximately 15%, NSCLC constitutes approximately 85% of lung cancers. The pulmonary
adenocarcinoma (ADC) and pulmonary squamous cell carcinoma (SqCC) are two most common entities in the NSCLC category,
which constitutes approximately 90% of all NSCLC[68].

Kriegsmann et al. confirmed that convolutional neuronal networks (CNNs) could
into subtypes including pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell lung
cancer (SCLC)[69]. Coudray et al. developed a deep convolutional neural network (inception v3) based on whole-slide images
obtained from the cancer genome atlas to realize accurately and automatically classifying them into LUAD, LUSC or normal
lung tissue[70].

classify the most common lung cancers
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In addition to early detection, appropriate staging and
grading of tumors or lesions are also very necessary in order
to formulate appropriate cancer treatment strategies[71].
The tumor-lymph node-metastasis (TNM) staging system is
one of the popular cancer staging methods[72].

Moitra et al. developed asimple and fast CNN model integrated
with Recurrent Neural Network (RNN) to realize automatic
AJCC staging of NSCLC. The developed CNN-RNN model is
obviously superior to other machine learning algorithms
under consideration[73]. Moitra et al. established a 1D CNN
model to realize automatic staging and histopathological
grading of non-small cell lung cancer[74].

Al Systems for EGFR mutation screening of Lung Cancer

Lung cancers were mainly classified into two types such as
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). The gene mutations in epidermal growth factor
receptor (EGFR) tyrosine kinase domain such as exon 19
E746-A750 deletion and exon 21 L858R point mutation are the
commonest mutation points. EGFR tyrosine kinase inhibitors
(TKIs) such as erlotinib and gefitinib, can treat effectively
lung cancer patients with gene mutation of EGFR[75]. How
to identify quickly gene mutation of EGFR owns great clinical
requirement. 1575 radiomics features were extracted from
PET images of 75 lung cancer patients with EGFR mutation

Figure 5. Experimental flowchart.

based on contrast agents such as 18F-MPG and 18F-FDG.
The Mann-Whitney U test was used for single factor analysis,
the Least Absolute Shrinkage and Selection Operator
(Lasso) Regression was used for feature screening, then the
radiomics classification models were established by using
support vector machines and ten-fold cross-validation, and
were used to identify EGFR mutation in primary lung cancers
and metastasis lung cancers(Figure 5,6), accuracy based on
18F-MPG PET images are respectively 90% for primary lung
cancers, and 89.66% for metastasis lung cancers, accuracy
based on 18F-FDG PET images are respectively 76% for
primary lung cancers and 82.75% for metastasis lung cancers.
The area under the curves (AUC) based on '8F-MPG PET
images are respectively 0.94877 for primary lung cancers, and
0.91775 for metastasis lung cancers, AUC based on "®F-FDG
PET images are respectively 0.87374 for primary lung cancers,
and 0.82251 for metastasis lung cancers. In short, both
18F-MPG PET images and 18F-FDG PET images combined
with established Al classification models can identify EGFR
mutation, then direct clinical doctors to select matched target
drug to treat lung cancer patients[Table 1].The established
Al model for screening EGFR mutation based on PET imaging
of patients with lung cancer own clinical translational
prospects[76].

Reproduced from ref. 76 with permission from American Scientific Publishers, Copyright 2021.
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Figure 6. Patients classification: (A) 18F-MPG PET images; (B)18F-FDG PET images
Reproduced from ref. 76 with permission from American Scientific Publishers, Copyright 2021.
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Table 1. Performances of the model.

Reproduced from ref. 76 with permission from American Scientific Publishers, Copyright 2021.

Training set Accuracy Precision Sensitivity Specificity F1
F-MPG

Primary foci 0.9 0.96 0.8571 0.9545 0.9057
Metastasis 0.8966 0.875 0.9333 0.8571 0.9032
¥F-FDG

Primary foci 0.76 0.8333 0.7143 0.8182 0.7692
Metastasis 0.8275 0.7778 0.9333 0.7143 0.8485
Validation set Accuracy Precision Sensitivity Specificity F1
¥F-MPG

Primary foci 0.92 0.9286 0.9286 0.9091 0.9286
Metastasis 0.9285 1 0.8571 1 0.9230
¥F-FDG

Primary foci 0.76 0.8333 0.7143 0.8182 0.7692
Metastasis 0.7857 0.75 0.8571 0.7143 0.8

Al Systems for Lung Cancer surgery therapy
Robotic-assisted pulmonary lobectomy is suitable for patients
being able to tolerate conventional lobectomy. Robotic
lobectomy owns those advantages such as decreased rates
of blood loss, blood transfusion, air leak, chest tube duration,
length of stay, and mortality. Especially the use of artificial
intelligence (Al) and machine learning (ML) can help in surgical
decision-making by improving the recognition of minute and
complex anatomical structures. All these advancements have
led to faster recovery and fewer complications in Surgical
patients [27,77,78].

The use of robotic assistance for complex pulmonary
resections such as segmentectomy and sleeve lobectomy has
steadily increased in recent years. Robotic surgery is well-
suited for complex pulmonary operation given its specific
advantages related to superior optics and precise tissue
manipulation and dissection[79,80]. Diego, et al. developed
robotic-assisted complex pulmonary surgery with a specific
focus on right upper sleeve lobectomy for lung cancer[81,82].
Liu, et al. developed puncture surgical robot for lung nodule
biopsy. MRl and CT image of patient with lung nodule was
obtained, established multimode molecular imaging data,
established two models for image segmentation, Double-well
NET | and Double-well Net I, which are based on the potts
model, double -well potential, network approximation theory
and operator-splitting methods. DN-I provides a data-driven
way to learn the region force functional, and to enhance
segmentation performance. The Double-well Nets introduce
an innovative approach that mathematical
foundations to enhance segmentation performance. Under
the directing ofimage models, puncture surgical robot realizes
a needle precisely reach the lesion site, extract diseased
tissue, reduce the occurrence of complications, ensure fast
recovery of lesion site[83].

With future advancements such as Al-driven automation,

leverages

nanorobots, microscopic incision surgeries, semi-automated
telerobotic systems, and the impact of 5G connectivity on
remote surgery, robotic-assisted pulmonary lobectomy will
achieve great advances to improve precision and accuracy,
own obvious advantages[84].

Al Systems for Lung Cancer prognosis

Predicting survival rates helps providers to ensure the best
treatment plan (involving life quality and medical expenses
of patients). Accurately predicting the survival rate of
lung cancer patients is one very difficult work. Due to the
increasing complexity of lung cancer, many time and biological
characteristics, and differences in patient populations, it
remains a challenge [85]. The application of Al in clinical
decision-making such as especially predicting survival rates
of lung cancer patients will improve healthcare operations.
Xu et al. evaluated deep learning networks for predicting
clinical results by analyzing time-series CT images of locally
advanced NSCLC patients[86]. Histological subtype prediction
is one main mission in grading NSCLC tumors. Moitra et
al. developed a more accurate deep learning model by
integrating convolutional and bidirectional cycle neural
networks to achieve histological subtype prediction, the
model can be used in the automated prognosis analysis of
patients with non-small cell lung cancer (NSCLC)[87].

Wu et al. established a convolutional neural network (CNN)
framework called Deep LRHE to predict the risk of lung cancer
recurrence by analyzing the histopathological images of lung
cancer patients [88]. Afshar et al. investigated the function of
3D CNNs to quantify radiographic tumor characteristics and
predict overall survival possibility[89]. Wang et al. developed
a deep convolutional neural network(CNN) model to identify
automatically the tumor area of advanced lung cancer from
H&E pathology images as shown in Figure 7. They found that
many characteristics of tumor shape are significantly related
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to tumor prognosis. So they established one prognostic risk prediction model for lung cancer[90]. Tau et al. proposed a deep
machine learning model integrated with a convolutional neural network (CNN) to predict the potential of newly diagnosed

non-small cell lung cancer (NSCLC) to metastasize to lymph nodes or distant sites[91]. Chamberlin et al. used Al to detect
automatically lung nodules and coronary calcium in the course of low-dose CT scans, and realized lung cancer screening. The
result is that the system has good accuracy and prognostic value[92].

Figure 7. (A) Use two data sets and other comparison models to describe the workflow based on deep learning. (B) Flow
chart of analysis process that Wang et al. developed to automatically identify the tumor area of lung ADC from H&E pathology

images.

Reproduced from ref. 90 with permission from Springer Nature, Copyright 2018.
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DISCUSS OPPORTUNITIES AND CHALLENGES AND
FUTURE DIRECTION

Artificial intelligence (Al) have realized to handle successfully
complex nonlinear relationships, fault tolerance, parallel
distributed processing and learning[93]. Al display unique
advantages such as self-adaptation, simultaneous operation
of quantitative and qualitative knowledge and validating
model results from some clinical studies in multiple fields[94].
Al also exhibit multipurposein the filed of clinical medicine[95].
Al not only can make full use of the various aspects data of
clinical diversity, but also can help to address some problems
such as current lack objectivity and universality in expert
systems[96,97]. Especially DL techniques improve our
ability to interpret imaging data[98, 99]. Those Al results can
enhance sensitivity of data analysis and ensure much fewer
false positives than radiologists. However, they also exist
the risk of overfitting the training data, and cause a brittle
degraded performance in certain settings[100].

Al also have to face some important challenges that must be
resolved to ensure its practical application in theranostics of
lung cancer[101]. Firstly, medical imaging data from the lungs
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can not be used as input data directly. Secondly, there is a
more sad view to be put forward[102], which is referred to
inherent uncertainties in medicine, and the possibility that
the “black box” of neural networks/ML applications will reduce
physician skills and transform rapidly some departments of
healthcare in ways that appear to be practical and economic
but with unintended negative consequences. Thirdly, there
are several ethical and safety issues including using Al after
obtaining patient consent and verifying who is responsible
for the misdiagnosis or incorrect therapy[103]. Fourthly, Al
cannot determine causal relationships. Al generated the
predictions, doctors have to evaluate and interpret critically
in clinically meaningful ways.

In the era of precision medicine, the predictability of artificial
intelligence in cancer management has great promise in
the near future[95]. However, the authors believe that Al
cannot replace doctors completely, Al achieves the best
performance, which is realized by using the way of human
and machine collaboration. In near future, experts can
study in depth the application of Al in the whole process
of lung cancer management, for example, important main
areas are early screening based on sensor for examining
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exhaled VOC biomarkers, pathology identification, risk
assessment, therapy guidance and outcome prediction.
Despite existing these various challenges[104], in the era of
precision medicine, integrating Genomics, proteomics and
metabolomics data with clinical information is very necessary
for future clinical practice. Therefore, artificial intelligence
have to integrate with multiple disciplines data in order to
make a new breakthrough, it is a new development direction.
In addition, it is very necessary to use large random events to
test Al models.

Nanomaterials own unique nano-effects, for example, up
conversion Nanoparticles, nano enzymes, gold nanoparticles
based nanoprobes, which were used for targeted imaging
and photodynamic or photothermal therapy of lung
cancer[105,106,107]. Al technology has also integrated with
nanotechnology, which was used for nanotheranostics of
lung cancer, enhanced precise image localization of in vivo
lung cancer, and directed local operation therapy. Medical
and industrial cross owns unique advantages to solve key
problem existed in diagnosis and therapy of lung cancer.

In 2022, USA Open Al company published Chat GPT, it blew
up the novel world of artificial intelligence, it established large
predictive models based on big data, brings new opportunities
for precise theranostics of lung cancer[108,109]. However,
application of Al in robotic-assisted pulmonary lobectomy
still pose major challenges, which are the high cost of
intelligence robotic systems, how to keep maintenance of
robotic systems, how to keep the size of the robot systems,
have to train surgeon to master how to use robots system to
perform lung cancer surgery. To solve those challenges will
bring innovative developing opportunities, which is also new
developing direction for theranostics of lung cancer in near
future.

CONCLUSION AND PROSPECTS

In recent ten years, Al technology has integrated with
chromatographic chip, microfludic chip, biosensors and PET/
CT, MRI imaging techniques, which were used for precise
detection of lung cancer biomarkers and precise image
localization of in vivo lung cancer, improved sensitivity and
specificity of diagnosis, and realized automated diagnosis,
staging, robotic-assisted treatment and prognosis of lung
cancer with high efficiency.

Artificial intelligence (Al) and machine learning, especially
deep learning and deep seek are increasingly applied in
theranostics of lung cancer. This article provides an overview
of the application of Al in theranostics of lung cancer. The
development and validation of Al algorithms requires large
volumes of well-structured data, and and the algorithms
are capable of treating variable levels of data. It is very
important that clinicians understand how Al can be applied in

theranostics of lung cancer where diagnostic criteria overlap,
how Al use to fit into everyday clinical practice, and how Al
use to address issues of patient safety. Al owns a clear role in
providing support for clinical doctors, but its relatively recent
introduction means that confidence in its application still
must be fully established. Al robot-assisted surgical operation
also need clinical test and transform. Al will play a key role in
aiding clinicians in the theranostics and management of lung
cancer in the future, Al will bring the benefits for patients and
doctors from its application in everyday clinical practice.

In conclusion, facing the requirement of clinical theranostics
of lung cancer patients, Al integrating with multidisciplinary
technology and data is a new development trend, application
of Al in theranostics and and management of lung cancer
owns excellent clinical transformation value and prospect in
near future.
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