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Abstract

Lung cancer is the first cause of cancer death worldwide. How to realize precise theranostics and management of Lung cancer has huge clinical 
demand. In past decade, artificial intelligence (AI), especially machine learning (ML) and deep learning (DL) are broadly used in medicine. Herein 
we focus on reviewing the main advances of ML and DL in diagnosis, treatment and prognosis of lung cancer. Besides, we summarize AI’s 
advantages, explore how AI assists theranostics of lung cancer by innovative AI algorithms, then we discussed the opportunities and challenges 
as well as the future directions in the clinical implementation of AI in lung cancer. Overall, AI integrated with multidisciplinary technology and data 
is a new development trend, its application in theranostics of lung cancer owns excellent clinical transformation value and prospect in near future.
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INTRODUCTION

Artificial intelligence (AI) is a new technical science that studies 
and develops theories, methods, technologies and application 
systems used to simulate, extend and expand human 
intelligence[1], It is an important driving force for the new 
round of scientific and technological revolution and industrial 
transformation. Its application exploration has become 
frontier hot spot since AI was proposed by mathematician 
john mccarthy in 1956 [2]. In the past decade, AI has been 
widely used in medicine[3], great advances have made in those 
directions such as nanoparticles-labeled tomography chip 
for biomarker detection[4], immunochromatographic assay 
and microfludic chip[5,6], medical biosensor for Healthcare 
System[7,8], cancer diagnosis and tumor nanomedicine[9-11], 
molecular image diagnosis[12], surgical interventions[13], 
drug discovery and overcoming multidrug-resistance[14], 
surgical skills training and assessment[15,16], hospital-wide 
big data analysis[17], and personalized therapy [18-20].
Machine learning is one kind of implementation pathway 
of AI, mainly study learning algorithms. Machine learning 

algorithms mainly include supervised learning, unsupervised 
learning, semi-supervised learning, reinforcement learning, 
deep learning, transfer learning, etc[21]. Deep learning (DL) 
is a new mean of machine learning, uses machines to treat 
various training data and to extract specific features by 
using backpropagation algorithms. DL mainly used multi-
layered artificial neural networks to analyze data to establish 
DL models by using Convolutional Neural Network(CNN), 
Recurrent Neural Network(RNN), Deep Reinforcement 
Learning(DRL) and Generative Adversarial Network(GAN)
[22]. DL models mainly adopt logic to treat data, recognize 
patterns, make conclusions, and make decisions[23]. In 
short, AI is based on the computer algorithm which is trained 
to realize the special functions including identifying and 
characterizing defined lesions. The computer algorithm is 
trained by exposing a large number of training elements using 
the previously described Machine Learning. Clinical decision 
support systems based on AI has made great advances[24].
Different types of AI computer systems are aimed to achieve 
different functions. Two main categories of AI systems are 
computer-aided detection (CADe) for lesion detection and 
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computer-aided diagnosis (CADx) for optical biopsy and 
lesion characterization[25,26]. Other AI systems provide 
assisted treatments, such as lesion description for complete 
endoscopic resection[27], magnetically programmed 
diffractive robotics was developed[28], magnetically 
controlled wireless power supply capsule endoscopy with 
intelligent software was used for NIR imaging and treatment 
of gastrointestinal diseases[29]. 
AI owns three outstanding advantages. Firstly, AI can optimize 
and realize  efficient and flexible nonlinear modeling for large 
data sets. Secondly, these models  can provide explanations 
that make knowledge dissemination easier. Thirdly, the  
human brain performance can be influenced by fatigue, 
stress or limited experiences, AI can make up for the limited 
capabilities of humans, prevent human errors, provide 
machines some reliable autonomy, and enhance work 
productivity and efficiency. Therefore, in order to service 
the increasing patients, AI should be best choice to assist 
theranostics and management of patients. 
Medical and industrial cross integration is the indispensable 
way of innovation and development[30]. The concept of 
medical and industrial integration development is that: 
based on the cross integration of medicine and engineering, 
it continues to track hot areas such as molecular biology, 
genomics, artificial intelligence technology, big data, cloud 
computing, mobile healthcare, and the internet of things, 
using quantum computing, 5G/6G communication, block 
chain, nanotechnology, Internet of Things, AI, AR, VR, MR 
technologies, to achieve prevention and diagnosis of diseases, 
treatment and rehabilitation, drug research and development, 
Traditional Chinese Medicine technology innovation. In short, 
with clinical needs as the goal, nanotechnology etc as the 

tools, information processing as the method, multidisciplinary 
cross to break through the bottlenecks and challenges 
of disease diagnosis and treatment[31-37]. For example, 
integrated nano-oncology has made great progress[38]. 
Gold nanoprism-assisted human PD-L1 siRNA realized gene 
therapy and photothermal therapy on lung cancer[39]. 
The quantity of medical robots with embedded AI software 
have become more and more, and rapidly enter into clinical 
application[27,40].     
Lung cancer is first commonest malignancy among men 
and the third  commonest cancer in women worldwide[41]. 
The overall 5-year survival rate of lung cancer patients is 
approximately 20%, however varies markedly depending 
on cancer  stage and molecular typing. Stage I lung cancer 
patient has a 5-year overall survival rate of greater than 75%, 
stage III lung cancer patient drops to 25% of 5-year survival 
rate [42]. Discovering early lung cancer is the only pathway 
for its cure.
Up to date, biomarker diagnosis, imaging diagnosis, cell 
and pathological  diagnosis are the primary diagnostic 
techniques of lung cancer[43]. Imaging diagnosis includes 
nuclear magnetic resonance image(MRI), isotope image, 
ultrasound, positron emission tomography and Computer 
Tomography(PET/CT). X-ray chest radiography and CT are 
the two common anatomical imaging modalities that are 
regularly used to  to recognize different lung diseases[44]. 
Herein we review the main advances of application of AI 
in diagnosis, treatment  and prognosis of lung cancer. We 
outlook application prospect of AI in theranostics of lung 
cancer, and discuss about the opportunities and challenges 
brought by artificial intelligence ( Figure 1). 
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Figure 1. Overview of application of AI in theranostics of lung cancer.

ADVANCES OF AI IN THERANOSTICS OF LUNG CANCER 

It is well known that lung cancer is the first commonest cancer worldwide. How to realize precise theranostics of lung cancer 
owns great clinical demand. Up to date,  as shown in Figure 2, CT-based imaging diagnosis is the primary tool to detect 
lung cancer at early stage[45], AI in lung cancer bright the chance to integrate  computational power and clinical decision-
making[46].
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Figure 2. CT Imaging in lung cancer. Instruction of the imaging modalities used in lung cancer screening, diagnosis, radiation 
planning & delivery, and follow-up. 
Reproduced from ref. 45 with permission from W.B. Saunders Ltd, Copyright 2022.

In the key National Lung Screening Trial (NLST) study, lung cancer screening with low-dose computed tomography (LDCT) 
showed a clear reduction in mortality[47]. Analogous results were also achieved in succeeding American and European 
studies[48,49]. Annual CT chest screening could reduce lung cancer mortality by at least 20% after 7 years compare with 
annual chest X-ray radiography[50].
While lung CT screening has the potential to dramatically reduce the number of lung cancer related deaths, the false positive 
rate of LDCT screening for lung cancer is reported to be as high as 96.4%[51], and the radiologists undertake high burden to 
make screening precise and efficient for large volumes of CT scans. On the one hand, it is very necessary to establish a new 
method that can effectively distinguish benign from malignant pulmonary nodules. At present, lot of scholars try to extract 
radiomic features of CT images of pulmonary nodules and establish theory models to realize the intelligent identification of 
benign and malignant pulmonary nodules[52-54]. On the other hand, there is an urgent requirement to seek an auxiliary 
mean, which can improve the diagnostic efficiency of lung cancer by integrating with CT imaging. 
AI based on deep learning owns the ability of efficient self-optimization, which can enhance not only the recognition ability of 
pulmonary nodules with different properties as shown in Figure 3, but also helps to improve the diagnostic efficiency of early-
stage lung cancer[55]. 

Figure 3. Categories of lung nodules in a CT scan; benign, primary malignant, and metastatic malignant (from left to right).
Reproduced from ref. 55with permission from MDPI, Copyright 2019.

AI systems for Lung Nodule Detection and Classification 
Toğaçar et al. used three deep learning models such as LeNet, AlexNet and VGG-16 to detect lung cancer. In addition, the 
features obtained from the last fully connected layer of CNNs are used as input data for different machine learning models, 
including linear regression (LR), linear discriminant analysis (LDA), decision tree (DT), support vector machine (SVM), Nearest 
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Neighbor (NN) and softmax. The combination of the AlexNet 
model and NN classifier achieves effective classification 
precise rate of 98.74%[56]. Du et al. established a three-layer 
diagnosis system for lung cancer, in which three machine 
learning models such as decision tree C5.0, artificial neural 
network (ANN) and support vector machine (SVM) were 
involved[57]. Zheng et al. has achieved better performance 
not only for small nodules but also for large lesions based 
on this data set. This proves the effectiveness of the CAD 
system they developed for the detection of lung nodules[58]. 
Wang et al. developed an innovative CNN-based nodule-size-
adaptive model for fast and precise  candidate detection[59]. 
Pradhan et al. used a 3D Convolutional Neural Network (CNN) 
to identify lung cancer, they obtained training accuracy of 
83.33%, testing accuracy of 100% and precision, recall, kappa-
Score, and F-score of 1[60]. Xie et al. proposed a new automatic 
lung nodule detection framework with 2D Convolutional 
Neural Network (CNN) to assist the CT reading process[61]. 
Setio et al. established  the LUNA16 architecture, an objective 
evaluation framework for automatic nodule detection 
algorithms using the largest publicly available chest CT scan 
reference database LIDC-IDRI data set[62]. Firmino et al. 
introduced a CAD system that contains two main components: 
1) A computer-aided detection (CADe) module for detecting 

and segmenting suspicious lung nodules, 2) A computer-
aided diagnosis (CADx) module, which realizes nodule level 
assessment and patient-level malignant tumor classification 
by analyzing suspicious lesions from CADe[63]. Sharma, et al. 
demonstrated and verified a new type of tuberculosis nodule 
detection system based on deep neural network[64]. Huang 
et al. proposed an Amalgamated - Convolutional 
Neural Network (A-CNN) and use it to screening pulmonary 
nodules[65].
Nasrullah et al. used two deep three-dimensional (3D) 
customized mixed link network (CMixNet) architectures for 
lung nodule detection and classification, respectively. Nodule 
detection were performed through faster R-CNN based on 
efficiently learned features from CMixNet and U-Net like 
encoder-decoder architecture. Classification of the nodules 
was performed through a gradient boosting machine (GBM) 
on the learned features from the designed 3D CMix Net 
structure. Better results were obtained compared to the 
existing methods[66]. Jung et al. used a three-dimensional 
deep convolutional neural network (3D DCNN) with shortcut 
connections and a 3D DCNN with dense connections for lung 
nodule classification. They used an ensemble method that 
aggregates the results of multiple trained models to boost 
performance[67].
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Figure 4. (A) CNN detection of pulmonary nodules. (B) Two different types of ensemble methods. The general ensemble 
method (left) and checkpoint ensemble method (right) . (C) The flowchart of the three deep learning models. 
Reproduced from ref. 67 with permission from Spring Nature, Copyright 2018.

AI systems for lung Cancer Classification and TNM Staging
Lung cancer were classified into two major categories such as small-cell lung cancer (SCLC) and non-small-cell lung cancer 
(NSCLC). SCLC constitutes approximately 15%, NSCLC constitutes approximately 85% of lung cancers. The pulmonary 
adenocarcinoma (ADC) and pulmonary squamous cell carcinoma (SqCC) are two most common entities in the NSCLC category, 
which constitutes approximately 90% of all NSCLC[68]. 
Kriegsmann et al. confirmed that convolutional neuronal networks (CNNs) could   classify the most common lung cancers 
into subtypes including pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell lung 
cancer (SCLC)[69]. Coudray et al. developed a deep convolutional neural network (inception v3) based on whole-slide images 
obtained from the cancer genome atlas to realize accurately and automatically classifying them into LUAD, LUSC or normal 
lung tissue[70]. 
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In addition to early detection, appropriate staging and 
grading of tumors or lesions are also very necessary in order 
to formulate appropriate cancer treatment strategies[71]. 
The tumor-lymph node-metastasis (TNM) staging system is 
one of the popular cancer staging methods[72].  
Moitra et al. developed a simple and fast CNN model integrated 
with Recurrent Neural Network (RNN) to realize automatic 
AJCC staging of NSCLC. The developed CNN-RNN model is 
obviously superior to other machine learning algorithms 
under consideration[73]. Moitra et al. established a 1D CNN 
model to realize automatic staging and histopathological 
grading of non-small cell lung cancer[74]. 

AI Systems for EGFR mutation screening of Lung Cancer 
Lung cancers were mainly classified into two types such as 
non-small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC). The gene mutations in epidermal growth factor 
receptor (EGFR) tyrosine kinase domain such as exon 19 
E746-A750 deletion and exon 21 L858R point mutation are the 
commonest mutation points. EGFR tyrosine kinase inhibitors 
(TKIs) such as erlotinib and gefitinib, can treat effectively 
lung cancer patients with gene mutation of EGFR[75]. How 
to identify quickly gene mutation of EGFR owns great clinical 
requirement. 1575 radiomics features were extracted from 
PET images of 75 lung cancer patients with EGFR mutation 

based on contrast agents such as 18F-MPG and 18F-FDG. 
The Mann-Whitney U test was used for single factor analysis, 
the Least Absolute Shrinkage and Selection Operator 
(Lasso) Regression was used for feature screening, then the 
radiomics classification models were established by using 
support vector machines and ten-fold cross-validation, and 
were used to identify EGFR mutation in primary lung cancers 
and metastasis lung cancers(Figure 5,6), accuracy based on 
18F-MPG PET images are respectively 90% for primary lung 
cancers, and 89.66% for metastasis lung cancers, accuracy 
based on 18F-FDG PET images are respectively 76% for 
primary lung cancers and 82.75% for metastasis lung cancers. 
The area under the curves (AUC) based on 18F-MPG PET 
images are respectively 0.94877 for primary lung cancers, and 
0.91775 for metastasis lung cancers, AUC based on 18F-FDG 
PET images are respectively 0.87374 for primary lung cancers, 
and 0.82251 for metastasis lung cancers. In short, both 
18F-MPG PET images and 18F-FDG PET images combined 
with established AI classification models can identify EGFR 
mutation, then direct clinical doctors to select matched target 
drug to treat lung cancer patients[Table 1].The established 
AI model for screening EGFR mutation based on PET imaging 
of patients with lung cancer own clinical translational 
prospects[76].
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Figure 5. Experimental flowchart.
Reproduced from ref. 76 with permission from American Scientific Publishers, Copyright 2021.

Figure 6. Patients classification: (A) 18F-MPG PET images; (B)18F-FDG PET images
Reproduced from ref. 76 with permission from American Scientific Publishers, Copyright 2021.
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Table 1. Performances of the model.
Reproduced from ref. 76 with permission from American Scientific Publishers, Copyright 2021.

Training set Accuracy Precision Sensitivity Specificity F1
18F-MPG

Primary foci 0.9 0.96 0.8571 0.9545 0.9057

Metastasis 0.8966 0.875 0.9333 0.8571 0.9032
18F-FDG

Primary foci 0.76 0.8333 0.7143 0.8182 0.7692

Metastasis 0.8275 0.7778 0.9333 0.7143 0.8485

Validation set Accuracy Precision Sensitivity Specificity F1
18F-MPG

Primary foci 0.92 0.9286 0.9286 0.9091 0.9286

Metastasis 0.9285 1 0.8571 1 0.9230
18F-FDG

Primary foci 0.76 0.8333 0.7143 0.8182 0.7692

Metastasis 0.7857 0.75 0.8571 0.7143 0.8
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AI Systems for Lung Cancer surgery therapy 
Robotic-assisted pulmonary lobectomy is suitable for patients 
being able to tolerate conventional lobectomy. Robotic 
lobectomy owns those advantages such as decreased rates 
of blood loss, blood transfusion, air leak, chest tube duration, 
length of stay, and mortality. Especially the use of artificial 
intelligence (AI) and machine learning (ML) can help in surgical 
decision-making by improving the recognition of minute and 
complex anatomical structures. All these advancements have 
led to faster recovery and fewer complications in Surgical 
patients [27,77,78]. 
The use of robotic assistance for complex pulmonary 
resections such as segmentectomy and sleeve lobectomy has 
steadily increased in recent years. Robotic surgery is well-
suited for complex pulmonary operation given its specific 
advantages related to superior optics and precise tissue 
manipulation and dissection[79,80]. Diego, et al. developed 
robotic-assisted complex pulmonary surgery with a specific 
focus on right upper sleeve lobectomy for lung cancer[81,82]. 
Liu, et al. developed puncture surgical robot for lung nodule 
biopsy. MRI and CT image of patient with lung nodule was 
obtained, established multimode molecular imaging data, 
established two models for image segmentation, Double-well 
NET I and Double-well Net II, which are based on the potts 
model, double -well potential, network approximation theory 
and operator-splitting methods. DN-I provides a data-driven 
way to learn the region force functional, and to enhance 
segmentation performance. The Double-well Nets introduce 
an innovative approach that leverages mathematical 
foundations to enhance segmentation performance. Under 
the directing of image models, puncture surgical robot realizes 
a needle precisely reach the lesion site, extract diseased 
tissue, reduce the occurrence of complications, ensure fast 
recovery of lesion site[83]. 
With future advancements such as AI-driven automation, 

nanorobots, microscopic incision surgeries, semi-automated 
telerobotic systems, and the impact of 5G connectivity on 
remote surgery, robotic-assisted pulmonary lobectomy will 
achieve great advances to improve precision and accuracy, 
own obvious advantages[84]. 

AI Systems for Lung Cancer prognosis
Predicting survival rates helps providers to ensure the best 
treatment plan (involving life quality and medical expenses 
of patients). Accurately predicting the survival rate of 
lung cancer patients is one very difficult work. Due to the 
increasing complexity of lung cancer, many time and biological 
characteristics, and differences in patient populations, it 
remains a challenge [85]. The application of AI in clinical 
decision-making such as especially predicting survival rates 
of lung cancer patients will improve healthcare operations. 
Xu et al. evaluated deep learning networks for predicting 
clinical results by  analyzing time-series CT images of locally 
advanced NSCLC patients[86]. Histological subtype prediction 
is one main mission in grading NSCLC tumors. Moitra et 
al. developed a more accurate deep learning model by 
integrating  convolutional and bidirectional cycle neural 
networks to achieve histological subtype prediction, the 
model can be used in the automated prognosis analysis of 
patients with non-small cell lung cancer (NSCLC)[87].  
Wu et al. established a convolutional neural network (CNN) 
framework called Deep LRHE to predict the risk of lung cancer 
recurrence by analyzing the histopathological images of lung 
cancer patients [88]. Afshar et al. investigated the function of 
3D CNNs to quantify radiographic tumor characteristics and 
predict overall survival possibility[89]. Wang et al. developed 
a deep convolutional neural network(CNN) model to identify 
automatically the tumor area of advanced lung  cancer from 
H&E pathology images as shown in Figure 7. They found that 
many characteristics of tumor shape are significantly related 
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to tumor prognosis. So they established one prognostic risk prediction model for lung cancer[90]. Tau et al. proposed a deep 
machine learning model integrated with a convolutional neural network (CNN) to predict the potential of newly diagnosed 
non–small cell lung cancer (NSCLC) to metastasize to lymph nodes or distant sites[91]. Chamberlin et al. used AI to detect 
automatically lung nodules and coronary calcium in the course of low-dose CT scans, and realized lung cancer screening. The 
result is that the system has good accuracy and prognostic value[92].

Figure 7.  (A) Use two data sets and other comparison models to describe the workflow based on deep learning. (B) Flow 
chart of analysis process that Wang et al. developed to automatically identify the tumor area of lung ADC from H&E pathology 
images. 
Reproduced from ref. 90 with permission from Springer Nature, Copyright 2018.
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DISCUSS OPPORTUNITIES AND CHALLENGES AND 
FUTURE DIRECTION

Artificial intelligence (AI) have realized to handle successfully 
complex nonlinear relationships, fault tolerance, parallel 
distributed processing and learning[93]. AI display unique 
advantages such as self-adaptation, simultaneous operation 
of quantitative and qualitative knowledge and validating 
model results from some clinical studies in multiple fields[94]. 
AI also exhibit multipurpose in the filed of clinical medicine[95]. 
AI not only can make full use of the various aspects data of 
clinical diversity, but also can help to address some problems 
such as current lack objectivity and universality in expert 
systems[96,97]. Especially DL techniques  improve our 
ability to interpret imaging data[98, 99]. Those AI results can 
enhance  sensitivity of data analysis and ensure much fewer 
false positives than radiologists. However, they also exist 
the risk of overfitting the training data, and cause a brittle 
degraded performance in certain settings[100].
AI also have to face some important challenges that must be 
resolved to ensure its practical application in theranostics of 
lung cancer[101]. Firstly, medical imaging data from the lungs 

can not be used as input data directly. Secondly, there is a 
more sad view to be put forward[102], which is referred to 
inherent uncertainties in medicine, and the possibility that 
the “black box” of neural networks/ML applications will reduce 
physician skills and transform rapidly some departments of 
healthcare in ways that appear to be practical and economic 
but with unintended negative consequences. Thirdly, there 
are several ethical and safety issues including using AI after 
obtaining patient consent and verifying who is responsible 
for the misdiagnosis or incorrect therapy[103]. Fourthly, AI 
cannot determine causal relationships. AI generated the 
predictions, doctors have to evaluate and interpret critically 
in clinically meaningful ways.
In the era of precision medicine, the predictability of artificial 
intelligence in cancer management has great promise in 
the near future[95]. However, the authors believe that AI 
cannot replace doctors completely, AI achieves the best 
performance, which is realized by using the way of human 
and machine collaboration. In near future, experts can 
study in depth the application of AI in the whole process 
of lung cancer management, for example, important main 
areas are early screening based on sensor for examining 



Daxiang Cui Directive Publications

exhaled VOC biomarkers, pathology identification, risk 
assessment, therapy guidance and outcome prediction. 
Despite existing these various challenges[104], in the era of 
precision medicine, integrating Genomics, proteomics and 
metabolomics data with clinical information is very necessary 
for future clinical practice. Therefore, artificial intelligence 
have to integrate with multiple disciplines data in order to 
make a new breakthrough, it is a new development direction. 
In addition, it is very necessary to use large random events to 
test AI models. 
Nanomaterials own unique nano-effects, for example, up 
conversion Nanoparticles, nano enzymes, gold nanoparticles 
based nanoprobes, which were used for  targeted imaging 
and photodynamic or photothermal therapy of lung 
cancer[105,106,107]. Al technology has also integrated with 
nanotechnology, which was used for nanotheranostics of 
lung cancer, enhanced precise image localization of in vivo 
lung cancer, and directed local operation therapy. Medical 
and industrial cross owns unique advantages to solve key 
problem existed in diagnosis and therapy of lung cancer.  
In 2022, USA Open AI company published Chat GPT, it blew 
up the novel world of artificial intelligence, it established large 
predictive models based on big data, brings new opportunities 
for precise theranostics of lung cancer[108,109]. However, 
application of AI in robotic-assisted pulmonary lobectomy 
still pose major challenges, which are the high cost of 
intelligence robotic systems, how to keep maintenance of 
robotic systems, how to keep the size of the robot systems, 
have to train surgeon to master how to use robots system to 
perform lung cancer surgery. To solve those challenges will 
bring innovative developing opportunities, which is also new 
developing direction for theranostics of lung cancer in near 
future.  

CONCLUSION AND PROSPECTS 

In recent ten years, AI technology has integrated with 
chromatographic chip, microfludic chip, biosensors and PET/
CT, MRI imaging techniques, which were used for precise 
detection of lung cancer biomarkers and precise image 
localization of in vivo lung cancer, improved sensitivity and 
specificity of diagnosis, and realized automated diagnosis, 
staging, robotic-assisted treatment and prognosis of lung 
cancer with high efficiency. 
Artificial intelligence (AI) and machine learning, especially 
deep learning and deep seek are increasingly applied in 
theranostics of lung cancer. This article provides an overview 
of the application of AI in theranostics of lung cancer. The 
development and validation of AI algorithms requires large 
volumes of well-structured data, and and the algorithms 
are capable of treating variable levels of data. It is very 
important that clinicians understand how AI can be applied in 

theranostics of lung cancer where diagnostic criteria overlap, 
how AI use to fit into everyday clinical practice, and how AI 
use to address issues of patient safety. AI owns a clear role in 
providing support for clinical doctors, but its relatively recent 
introduction means that confidence in its application still 
must be fully established. AI robot-assisted surgical operation 
also need clinical test and transform. AI will play a key role in 
aiding clinicians in the theranostics and management of lung 
cancer in the future, AI will bring the benefits for patients and 
doctors from its application in everyday clinical practice.
In conclusion, facing the requirement of clinical theranostics 
of lung cancer patients, AI integrating with multidisciplinary 
technology and data is a new development trend,  application 
of AI in theranostics and and management of lung cancer 
owns excellent clinical transformation value and prospect in 
near future. 
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