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ABSTRACT

Numerous studies have demonstrated that severe oxidative 
and free radical damage to the brain is a common feature 
of human neurodegenerative illnesses, including Alzheimer’s 
disease, Parkinson’s disease, amyotrophic lateral sclerosis, 
Huntington’s disease, and cerebellar ataxias. Actually, a 
wealth of data points to oxidative stress as the primary 
cause of neuronal cell loss and apoptosis in these types of 
illnesses.The brain possesses an intricate antioxidant system 
that has developed over time to continuously eliminate 
harmful free radicals and reactive oxygen species. It has 
long been hypothesized that a significant portion of the 
cognitive deterioration that comes with aging is connected 
to progressive oxidative damage to neurons. Nevertheless, 
regardless of the origin of these diseases, treatment 
approaches for their shared pathologic outcome, as a redox 
issue in the brain have been deficient. Oral or parenteral 
delivery of antioxidants has been the mainstay of antioxidant 
therapeutic options in human neurodegenerative illnesses; 
however, these approaches are likely limited in their ability to 
appreciably “reduce” the central nervous system due to the 
blood-brain barrier. In this article, I examine the data in favor 
of investigating intrathecal melatonin for neuroprotection 
and disease modification in neurodegenerative illnesses like 
Alzheimer’s disease.

INTRODUCTION

While the exact etiology of neurodegenerative diseases 
like Alzheimer’s disease is still unknown, oxidative damage 
to neurons is a well-established common theme in their 
pathogenesis. In fact, there is so much evidence supporting 
the oxidative stress theory in neurodegenerative illnesses 
that a textbook on the subject was written and published 
in 1997, 20 years ago [1]. Nonetheless, the brain’s oxidative 
imbalance has not received much attention in terms of 
therapeutic interventions. Oxidative stress is most likely to 
affect the brain. Due to its high energy requirement (1/5 of 
total oxygen consumption and 1/6 of cardiac output), the 
brain is especially vulnerable to damage from free radicals. 
high levels of polyunsaturated fatty acids and a lot of 
transition metals, such iron, which could function as a catalyst 
to produce reactive oxygen species (ROS) and free radicals [2-
4]. ROS include superoxide radical (O2-), hydroxyl radical (OH), 
and hydrogen peroxide (H2O2). Some ROS are free radicals, 
which are defined as having one or more unpaired electrons, 
as indicated by the dot notation, while others are not. Reactive 
nitrogen species (RNS) like peroxynitrite (ONOO-) can also 
cause oxidative stress since they can easily damage proteins, 
lipids, carbohydrates, and DNA [1]. About 98% of molecular 
oxygen is used by the mitochondria at the cytochrome c 
oxidase complex during physiological conditions, and ROS 
are mostly produced by mitochondria during normal cellular 
respiration.

Age-related cognitive loss has been hypothesized to be mostly 
caused by oxidative damage to the brain, which worsens with 
age [6, 7]. The oxidative damage theory more clearly explains 
why neurons die in neurodegenerative illnesses, despite 
the fact that aberrant protein accumulation has received 
a lot of attention in these conditions. Free radicals, reactive 
oxygen species, and other reactive oxygen species (RNS) can 
cause necrosis and apoptosis in neuronal cells by destroying 
proteins, nucleic acids, carbohydrates, and lipids within a cell. 
Specifically, it has been determined that oxidative damage is 
the cause of cell suicide or apoptosis, and that anti-oxidant 
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enzyme overexpression and the addition of antioxidants 
can prevent apoptosis in neuronal cell lines [8–10]. Neurons 
possess many defense mechanisms to fend off hazardous 
oxidative products resulting from regular metabolism 
under normal circumstances. These redundant defense 
mechanisms include of non-enzyme substances (coenzyme 
Q, glutathione, and melatonin) as well as enzymes 
(superoxide dismutase, catalase, glutathione peroxidase, 
and phospholipid hydroperoxide glutathione peroxidase).

Hypothesis

One of nature’s most powerful antioxidants and free radical 
scavengers for the central nervous system, melatonin, can be 
administered intrathecally through a pump to treat a variety 
of neurodegenerative diseases, including Alzheimer’s.
The etiology of Parkinson’s disease (PD) appears to be 
strongly associated with ROS-induced oxidative stress. 
Neuroinflammation, mitochondrial dysfunction, and 
dopamine metabolism have all been connected to ROS in 
Parkinson’s disease [15]. Significantly lower levels of reduced 
glutathione, elevated superoxide dismutase enzyme (which 
suggests a compensatory response to elevated superoxide 
radicals), elevated products of free radical lipid damage, 
such as lipid hydro peroxides and malondialdehydes, and 
elevated levels of DNA oxidative damage products, such 
as 8-hydroxyguanosine, have been found in the substantia 
nigra, the primary region of selective dopaminergic cell loss 
in Parkinson’s disease (PD) [1]. The herbicide rotenone, 
which causes oxidative stress and the death of dopaminergic 
neurons in the substantia nigra, can induce experimental 
Parkinson’s disease in rats [16]. MPTP, This results in complex 
I inhibition in the mitochondrial electron transport chain, 
which in turn produces high amounts of reactive oxygen 
species (ROS) and causes Parkinsonism in humans and 
primates [17]. Furthermore, it has been observed that PD 
patients have a specific increase in free iron in the substantia 
nigra, which is thought to catalyze the Fenton reaction, which 
produces ROS [18, 19]. Since dopamine can auto-oxidize 
to produce dopamine quinones and free radicals, it may 
be regarded as an unstable chemical. Impaired dopamine 
metabolism may also contribute to ROS in Parkinson’s 
disease. Last but not least, PD-related proteins like alpha-
synuclein have a tendency to congregate when reactive 
oxygen species (ROS) are present, and they can also promote 
ROS generation via influencing mitochondrial activity.

Lastly, oxidative stress in the central nervous system has 
been strongly linked to a number of neurodegenerative 
disorders, including cerebellar ataxias, Huntington’s disease, 
and amyotrophic lateral sclerosis, in addition to the most 
common neurodegenerative disorders that have been 

covered thus far [22–24]. Thus, addressing oxidative stress 
has emerged as a viable treatment approach for a variety of 
neurodegenerative conditions.

Neurodegenerative Diseases and Melatonin
It has been shown that melatonin (5-acetyl-5-
methoxytryptamine) is an ancient chemical that reduces 
the metabolic threshold for oxygen [26]. Melatonin lowers 
oxidative damage through a variety of pathways, and evidence 
suggests that it has been conserved during billions of years 
of evolution in all living forms, including microbes. Melatonin 
has several anti-oxidant properties, such as direct free 
radical scavenging, promoting antioxidative enzymes, raising 
mitochondrial oxidative phosphorylation efficiency, lowering 
free radical production, and enhancing the effectiveness of 
other antioxidants [27]. In 1993, melatonin’s potential as an 
antioxidant was first identified [28]. It is primarily delivered 
to the brain by direct secretion into the cerebrospinal fluid of 
the brain ventricular system, namely the third ventricle. It is 
produced in the vertebrate pineal gland and retina.

CONCLUSION

The pathophysiology of neurodegenerative disorders like 
Parkinson’s and Alzheimer’s disease is similar in that they 
are caused by oxidative brain damage. The brain may 
be more susceptible to age-related cognitive loss and 
neurodegenerative processes as a result of the age-related 
decrease in cerebrospinal melatonin, a crucial antioxidant 
mechanism in the central nervous system. A straightforward 
and innovative approach to disease modification in 
neurodegenerative illnesses is to increase the CSF melatonin 
concentration in a nocturnal temporal manner using an 
implanted intrathecal pump and catheter system. This 
approach merits clinical investigation.
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