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HIV-1 vaccine components facilitate the 
production of virus-like particles (VLPs) and the 
presentation of envelope proteins that reveal 
broadly neutralizing epitopes.
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ABSTRACT

Developing a preventive vaccination is hampered most by the 
sequence variety of HIV-1. Trialists are currently testing Mosaic 
(Mos) antigens, which are made up of artificially scrambled 
epitopes from different strains of HIV-1 (NCT03964415). The 
Mosaico vaccine includes vectors that mediate gene transfer 
and production of the membrane-anchored Env-variant 
Mos2S.Env in addition to adenovirus vectors encoding 
variations of the Mos.Gag-Pol and soluble Mos.Env proteins. 
Therefore, we investigated whether the production of virus-
like particles (VLPs) is mediated by the expression of mosaic 
Gag. The Mos1.Gag- and Mos2.Gag-VLP-formation was 
easily identified using electron microscopy and Western blot 
analysis. Co-expression of Mos2S. Env and both mosaic Gag 
variants resulted in the integration of Env into Gag-formed 
VLPs. Mos2S.Env-decorated VLPs were shown to display 
the corresponding neutralization-sensitive target epitopes 
when a panel of broadly neutralizing antibodies (bNAbs) was 
used in a VLP-capture test. This provides fresh insights for 
developing HIV vaccines in the future.
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INTRODUCTION

It is vitally necessary to create a preventive vaccination in order 
to fight the HIV/AIDS epidemic. A perfect vaccination would 
stimulate humoral as well as cellular immunity. However, the 
development of a vaccine is severely hampered by the great 
genetic heterogeneity of HIV-1 (Gaschen et al., 2002; Ndung’u 
and Weiss, 2012). To reduce the number of infected cells 
and, consequently, the viral load, a robust T cell response—
especially one that involves CD8+ cytotoxic T lymphocytes 
(CTLs)—must be triggered (Kiepiela et al., 2007; Janes et al., 
2017; Collins et al., 2020). Furthermore, in order to prevent 
virus cell entrance, a strong vaccination must stimulate the 
production of broadly neutralizing antibodies (bNAbs) against 
neutralization-sensitive epitopes found in the viral envelope 
glycoproteins (Env) (Zolla-Pazner et al., 2014; 
So-called mosaic (Mos) HIV antigens, which are composed of 
artificially shuffled epitope sequences coming from several 
HIV variations, were created to increase coverage of potential 
T and B cell epitopes originating from diverse HIV variants 
(Fischer et al., 2007). When rhesus macaques were vaccinated 
with an adenovirus vector containing the antigen-encoding 
genes Mos.Gag, Mos.Pol, and Mos.Env, the results showed 
that the antigen-specific T cell responses were more extensive 
and varied than when utilizing consensus or naturally 
occurring sequences (Barouch et al., 2010). These results 
served as the foundation for the ongoing Mosaico clinical trial 
(NCT03964415). In addition to soluble Env proteins acting as 
booster vaccine subunit components, the The adenovirus 
vector components Ad26.Mos1.Gag-Pol, Ad26.Mos2.Gag-Pol, 
Ad26.Mos1.Env, and Ad26.Mos2S.Env are part of the Ad26.
Mos4 tetravalent vaccination (Ad26.Mos4) for HIV (Baden et 
al., 2020). Mos2S.Env, also known as C4D7, is membrane-
anchored because it possesses a transmembrane region, in 
contrast to the soluble Mos1.Env. When compared to its full-
length counterpart, the shortened cytoplasmic tail (CT) of 
Mos2S.Env was demonstrated to enhance surface expression 
(Langedijk et al., 2019, 2021). The ability of the artificial mosaic 
Gag variations to promote the generation of virus-like particles 
(VLPs), as seen with naturally occurring Gag precursor proteins 
(Gheysen et al., 1989; Konnyu et al., 2013), has not yet been 
investigated. Following the administration of the tetravalent 
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vaccine Ad26.Mos4.HIV, vaccination recipients may develop 
VLPs. VLPs significantly increase cellular.
To evaluate the capacity of mosaic antigens to generate vector 
lip products (VLPs), we generated viable human suspension 
cell lines that expressed either Mos1.Gag and Mos2.Gag 
alone or in combination with Mos2S.Env. Transposon vectors 
generated from piggyBac were created and then transfected 
293-F cells in order to accomplish this. This method was 
used since transposon vectors have been demonstrated in 
the past to facilitate the quick establishment of recombinant 
cell lines that produce particles derived from viruses (Lynch 
et al., 2010; Berg et al., 2019; van Heuvel et al., 2021). Cell-
free supernatants were pelleted using ultracentrifugation, 
and the resulting pellets were submitted to Western blot and 
electron microscopic examination to determine if bald and 
Env-decorated VLPs were generated. 
Additionally, bNAbs were used in VLP capture tests to 
precipitate VLPs that were likely to have epitopes responsive 
to neutralization. VLPs with precipitated env-positive.

RESULTS 

The initial evidence that the expression of both Mos1.Gag 
and Mos2.Gag, respectively, in the absence or presence of 
Mos2S. Env were able to mediate VLP-formation came from 
transient transfection experiments using HEK293T cells 
and the described transposon vectors containing mos1.
gag, mos2.gag, and mos2s.env. Using a p24-specific ELISA, 
it was discovered that cell-free supernatants three days 
after transfection contained up to 110 ng/mL of gag (data 
not shown). Transposon-mediated gene transfer was used 
to quickly establish cell lines that persistently expressed 
the mosaic HIV genes, demonstrating the formation of VLPs 
and facilitating in-depth study. The very active piggyBac 
transposase is made possible by CMVhyPBase, as shown in 
Fig. 1 (Yusa et al., 2011). For each mosaic, the transposon 
constructions PB-Mos1.Gag-IpW and PB-Mos2.Gag-IpW 
encode. gag genes connected to puromycin resistance gene 
expression. Vector donor PB-Mos2S.Env consists of the 
hygromycin resistance gene connected to the mosaic env 
gene. The suspension cells of human 293-F were.

The aforementioned VLP samples were also submitted 
to Western blot-analysis employing polyclonal antibodies 
directed against the surface unit gp120-SU of HIV-1 Env in 
order to investigate the possible inclusion of Mos2S.Env into 
mosaic Gag-formed VLPs. Negative controls were samples 
of uninfected 293-F cells and cells that expressed just Gag 
variations, respectively. Mos2S.Env proteins were easily 
and only found in VLPs made by gag- and env-transgenic 
cells, as shown in Fig. 3. by the cellular furin-like proteases 
(McCune et al., 1988; Hallenberger et al., 1992; Decroly et al., 

1994). of the precursor proteins. There were no signs of Env 
degradation products.
The levels of Env protein found were similar. This demonstrated 
that Mos2S.Env was effectively incorporated into VLPs created 
by both mosaic Gag proteins. Remarkably, extremely few 
amounts of the unprocessed precursor gp140-Pr proteins 
were found, whereas the great majority of Env identified were 
fully processed, and hence soluble, gp120-SU proteins. This 
demonstrated the extremely effective processing. 
We created a piggBac-derived transposase construct and 
three transposon vectors encoding Mos1.Gag, Mos2.Gag, and 
Mos2S.Env, respectively, to quickly establish stable human 
293-F suspension producer cell lines upon co-transfection and 
selection in order to investigate VLP-formation mediated by 
mosaic gene expression. Using negative stain transmission 
electron microscopy (TEM) analysis, VLPs were easily identified 
when Mos1.Gag, Mos2.Gag, and Mos2S were expressed 
exclusively. These results are consistent with other studies 
(Chapman et al., 2017) that showed mosaic Gag sequences 
might induce VLPformation following expression in human 
cells. 
Following co-transfection of cells with mosaic gag and chimeric 
env plasmid vectors and infection of cells with MVA vaccines, 
Chapman and colleagues have previously shown the in vivo 
formation of Env-decorated mosaic Gag VLPs.
cleaves Gag into its subunit components, a process that 
would be mediated by the viral protease and included in the 
Ad26.Mos4.HIV vaccine. On the other hand, this should have 
a favorable impact on the particles’ immunogenicity and, 
thus, their potential as vaccine ingredients. In a comparative 
investigation using DNA/MVA vaccinations in rhesus monkeys, 
Ellenberger and colleagues reported on the enhanced 
immunogenicity of mature as opposed to immature VLPs 
(Ellenberger et al., 2005).

MATERIALS AND METHODS

The transposon donor vectors and the transposase construct 
had nearly identical genomic designs with the vectors derived 
from Sleeping Beauty that we previously reported (Berg et al., 
2019, 2020). The PB-CAG-DDdCas 9VP192-T2A-GFP-IRES-Neo, a 
generous donation from Timo Otonkoski (plasmid no.102885; 
Addgene, USA), provided the DNA sequences for the piggyBac 
ITRs. After being synthesized (GenScript, USA), the ITRs were 
introduced into pUC57 to create pUC57-piggyBacITRs. Using 
FseI restriction sites, the transgene expression cassettes of the 
donor vectors SB-IpW and SB-IhW, which were generated from 
Sleeping Beauty, were introduced into pUC57-piggyBacITRs 
to produce PB-IpW and PB-IhW, respectively. Using codon 
optimization for human and Chinese hamster ovary cells, 
the genes encoding Mos1.Gag, Mos2.Gag, and Mos2S.Env, 
respectively, were synthesized (GenScript, USA) and inserted 
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into pUC57. Human suspension 239-F cells (Thermo Fisher 
Scientific Cat #R79007, RRID: CVCL_D603, USA) were used in 
all investigations. 
expanded in Thermo Fisher Scientific’s (293F-FreeStyle-
Expression-Medium, USA) serum-free formulation. In order 
to generate stable VLP producer cells, 293-F cells were co-
transfected with the transposase construct and one of the 
gag-expressing transposon vectors, or both in conjunction 
with the transposon vector encoding Mos.2SEnv. As 
previously mentioned (Berg et al., 2020), 293-F cells were 
transfected using 1 g/L polyethylenimine (PEI; MW 40,000; 
Polysciences, USA) and then stable cell lines were chosen. 
In summary, 50 μg of plasmid DNA total was utilized for 
transfection, and the hyPBase construct was always used 
in a 1:1:4 ratio with Gag expressing transposon vectors. 
consistent producing cell lines that express Gag and Env 
were created via transfection at a 1:2:2 ratio. A moderate 
selection pressure was applied four days after transfection 
(dpt) utilizing doses of 4 μg/mL puromycin, or equivalently, 
4 μg/mL puromycin combined with 50 μg/mL hygromycin. 
Antibiotic concentrations were continuously raised. Starting 
at day 21, recombinant cell lines were maintained under 
continuous selection pressure with 200 μg/mL hygromycin, 
10 μg/mL puromycin, and 15 μg/mL puromycin, respectively. 
Using 250–500 mL disposable shaker flasks with vent lids 
(Nalgene Nunc International, USA), cultivation was done in 
quantities of 50–200 mL media at starting cell densities of 0.6 
x 106 cells/mL. A Minitron shaker incubator with an 8% CO2 
atmosphere, 37 °C, and 135 rpm was used for the incubation.
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